Molality of the solution is defined as the number of moles of a substance dissolved divided by the mass of the solvent:
Molality = number of moles / solvent mass
From the concentration of 39% (by mass) of HCl in water, we construct the following reasoning:
in 100 g solution we have 39 g hydrochloric acid (HCl)
number of moles = mass / molecular weight
number of moles of HCl = 39 / 36.5 = 1.07 moles
solvent (water) mass = solution mass - hydrochloric acid mass
solvent (water) mass = 100 - 39 = 61 g
Now we can determine the molality:
molality = 1.07 moles / 61 g = 0.018
a short microscopic hairlike vibrating structure found in large numbers on the surface of certain cells.
Explanation:
either causing currents in the surrounding fluid, or, in some protozoans and other small organisms, providing propulsion.
Answer:
The molarity of the solution is 0,31 M
Explanation:
We calculate the weight of 1 mol of NaCl from the atomic weights of each element of the periodic table. Then, we calculate the molarity, which is a concentration measure that indicates the moles of solute (in this case NaCl) in 1000ml of solution (1 liter)
Weight 1 mol NaCl= Weight Na + Weight Cl= 23 g + 35, 5 g= 58, 5 g
58, 5 g-----1 mol NaCl
13,1 g ---------x= (13,1 g x 1 mol NaCl)/58, 5 g= 0, 224 mol NaCl
727 ml solution------ 0, 224 mol NaCl
1000ml solution------x= (1000ml solutionx0, 224 mol NaCl)/727 ml solution
x=0,308 mol NaCl---> <em>The solution is 0,31 molar (0,31 M)</em>
The correct answer would be the first option. Material A having a smaller latent heat of fusion would mean that it will take only less energy to phase change into the liquid phase. Latent of heat of fusion is the amount of energy needed of a substance to phase change from solid to liquid or liquid to solid.
If you need to translate, the answer is
Chemical agents concept