Answer:
The Bohr model suggested that electrons orbited the nucleus in circular paths where as the modern model views the atom to consist of positively charged nucleus surrounded by electrons.
Explanation:
In the modern model, the nucleus contains two sub-atomic particles, the protons which are positively charged and the neutrons which are not charged.According to Bohr's model,the electron in a hydrogen atom travel around the nucleus in a circular orbit. In the modern model, electrons do not move around nucleus around circular obits.
The types of intermolecular forces that occur in a substance will affect its physical properties, such as its phase, melting point and boiling point.
<u>Answer</u>:
By tracking oxidation numbers we can identify the number electron in the atom
<u>Explanation</u>:
Tracking of electrons helps us to know when and how many electrons get transferred from one atom to other atom . Oxidation referred as the “loss of one or more electrons” by an atom. When the oxidation number of an element increases, there is a loss of electrons and that element is being oxidized. Oxidation numbers are usually written with the sign (+plus or −minus) followed by the magnitude, which is the opposite of charges on ions. In their elemental stage oxidation number of an atom is zero.
To determine the pressure in units of kPa, we need to use a conversion factor to convert the units from mmHg to kPa. A conversion factor is a value that would relate two different units and is multiplied or divide to the original measurement depending on what is units is asked. From literature, 1 atm is equal to 760 mmHg and it is also equal to 101.325 kPa. We use these factors to convert the given value. We do as follows:
2150 mmHg ( 1 atm / 760 mmHg ) ( 101.325 kPa / 1 atm ) = 286.643 kPa
Therefore, the closest value from the choices is the second one which has the value of 287, this would be answer.