The best way to accurately determine the pair with the highest electronegativity difference is by using their corresponding electronegativity values. For the each of the choices, the difference is:
A. H-S = 2.5 - 2.1 = 0.4
B. H-Cl = 3 - 2.1 = 0.9
C. N-H = 3 - 2.1 = 0.9
D. O-H = 3.5 - 2.1 = 1.4
E. C-H = 2.5 - 2.1 = 0.4
As show, D. has the highest difference. Without looking at their values, you can also determine the pair with the highest difference by taking note of the trend of electronegativity on the periodic table. Electronegativity increases as you go right a group and up a period. This makes oxygen the most electronegative element among the other elements paired with hydrogen.
Answer:
Axial
Explanation:
In the most stable conformation of Cis-3-tert-Butylcyclohexanol, the tert-butyl group is at equatorial position and the alcohol group is in the axial position.
If the tert-butyl group is placed in equatorial position, repulsions are minimized. The bulkier the group, the greater the energy difference between the axial and equatorial conformers. Hence for a ring having a bulky substituent, such bulky substituent is better placed in the equatorial position.
The energy difference between the conformers of Cis-3-tert-Butylcyclohexanol is so high that the compound is almost "frozen" in a conformation where the tert-butyl groups are equatorial and the -OH groups are axial. This conformer is more stable by 24 KJ/mol.
Answer:
= 72.73%
Explanation:
The percentage by mass of an element is given by;
% element = total mass of element in compounds/molar mass of compound × 100
The mass of oxygen in carbon dioxide = 32 g
Molar mass of CO2 = 44 g
Therefore;
% of O2 = 32/44 × 100%
<u>= 72.73%</u>
Answer:
CH3CH2CH2Cl
CH3CH2CH2CH2CH2SH
Br2
Explanation:
Dispersion forces increases with increase in relative molecular mass. The specie having the greater relative molecular mass definitely has greater dispersion forces. A rough estimation of the relative molecular masses of the species stated in the answer will reveal this fact.
She forgot to put (II) it should be tin(II)sulfide