Answer:
A burning candle. (chemical energy into energy of heat and light, i.e. thermal and wave)
Explanation:
The answer for the following problem is mentioned below.
The option for the question is "A" approximately.
- <u><em>Therefore the elastic potential energy of the string is 20 J.</em></u>
Explanation:
Given:
Spring constant (k) = 240 N/m
amount of the compression (x) = 0.40 m
To calculate:
Elastic potential energy (E)
We know;
<em>According to the formula;</em>
E =
× k × x × x
<u>E = </u>
<u> × k ×(x)²</u>
where;
E represents the elastic potential energy
K represents the spring constant
x represents amount of the compression in the string
So therefore,
Substituting the values in the above formula;
E =
× 240 × (0.40)²
E =
× 240 × 0.16
E =
× 38.4
E = 19.2 J or approximately 20 J
<u><em>Therefore the elastic potential energy of the string is 20 J.</em></u>
By compressing the spring a distance <em>x</em> (in m), you are storing 1/2 <em>k</em> <em>x</em> ² (in J) of potential energy, which is converted completely into kinetic energy 1/2 <em>m v</em> ², where
• <em>k</em> = 40 N/m = spring constant
• <em>m</em> = 10 kg = mass of the ball
• <em>v</em> = 2 m/s = ball's speed (at the moment the spring returns to its equilibrium point)
So we have
1/2 <em>k</em> <em>x</em> ² = 1/2 <em>m</em> <em>v</em> ²
<em>x</em> = √(<em>m</em>/<em>k</em> <em>v</em> ²) = √((10 kg) / (40 N/m) (2 m/s)²) = 1 m
Answer:B
Explanation:
I’m doing the same thing you are!