The strength of the electric and magnetic fields there is no physical "distance" of oscillation here. nothing is actually moving up and down if you draw light as a sinusoidal wave, the up and down motion is the strength of the EM fields cheers
Answer:
Value of electric field along the axis and equitorial axis
and
respectively.
Explanation:
Given :
Distance between charges , 
Magnitude of charges , 
Dipole moment , 
Case A) (x,y) = (12.0 cm, 0 cm) :
Electric field of dipole in its axis ,

Putting all values and 
We get , 
Case B) (x,y) = (0 cm, 12.0 cm) :
Electric field of dipole on equitorial axis ,

Putting all values and
We get , 
Hence , this is the required solution.
How would you describe the behavior of particles in a solid?
9*
m
Explanation:
Step 1:
We are given the initial length of the Pyrex glass dish at a particular temperature and need to calculate the change in the length when the temperature changes by 120° C. The coefficient of linear expansion of Pyrex is provided.
Step 2:
Change in length = Coefficient of linear expansion * Change in temperature * Initial length
Step 3:
Coefficient of linear expansion = 3*
/°C
Change in temperature = 120°C = 120 K
Initial length = 0.25 m
Step 4:
Change in length = 3*
* 120 * 0.25 = 9*
m
Well if you didn't you could make mistakes, which would lead ,in the best case, at a fail of the circuit , or if it goes out of control it could be dangerous
for example you have to know that the wires become hot and they loose their abbilitys as connecters(the hotter it will, the more energy you lose becouse the R will be bigger)