If it is assumed that there are only two isotopes then the percent abundance needs to add up to 100%
100-35= 65%
The second isotope will have a 65% abundance.
<span />
953.6 g of iron (III) oxide (Fe₂O₃)
Explanation:
We have the following chemical reaction:
2 Fe₂O₃ (s) + 3 C (s) → 4 Fe (s) + 3 CO₂ (g)
We calculate the number of moles of CO₂ by using the following formula:
pressure × volume = number of moles × gas constant × temperature
number of moles = (pressure × volume) / (gas constant × temperature)
number of moles of CO₂ = (2.1 × 100) / (0.082 × 300)
number of moles of CO₂ = 8.54 moles
Taking in account the chemical reaction we devise the following reasoning:
if 2 mole of Fe₂O₃ produces 3 mole of CO₂
then X moles of Fe₂O₃ produces 8.54 mole of CO₂
X = (2 × 8.54) / 3 = 5.69 moles of Fe₂O₃
number of moles = mass / molar weight
mass = number of moles × molar weight
mass of Fe₂O₃ = 5.69 × 160 = 953.6 g
Learn more about:
number of moles
brainly.com/question/14111505
#learnwithBrainly
The formation of chemical bonds occurs due to the attractive forces between oppositely charged ions (ionic bonds) or by sharing of electrons (covalent bonds).
An atom having tendency of attracting a shared pair of electrons towards itself and this chemical property is said to Electronegativity .
Thus, the attractive forces which draws in surrounding electrons for chemical bonds is electronegativity.
Answer:
Aluminum metal
Explanation:
In order to properly answer this or a similar question, we need to know some basic rules about galvanic cells and standard reduction potentials.
First of all, your strategy would be to find a trusted source or the table of standard reduction potentials. You would then need to find the half-equations for aluminum and gold reduction:


Since we have a galvanic cell, the overall reaction is spontaneous. A spontaneous reaction indicates that the overall cell potential should be positive.
Since one half-equation should be an oxidation reaction (oxidation is loss of electrons) and one should be a reduction reaction (reduction is gain of electrons), one of these should be reversed.
Thinking simply, if the overall cell potential would be obtained by adding the two potentials, in order to acquite a positive number in the sum of potentials, we may only reverse the half-equation of aluminum (this would change the sign of E to positive):
Notice that the overall cell potential upon summing is:

Meaning we obey the law of galvanic cells.
Since oxidation is loss of electrons, notice that the loss of electrons takes place in the half-equation of aluminum: solid aluminum electrode loses 3 electrons to become aluminum cation.
Answer:
350mmHg
Explanation:
Use Dalton law
Total=P gas 1+p gas 2+ P gas 3
825=P1+350+125
825=P1+475
825-475= P1
P1= 350 mm Hg