I believe the correct answer from the choices listed above is the last option. If the volatility of X is higher than that of Y, then <span>Y’s molecules experience stronger London dispersion forces than X’s molecules. All molecules has london dispersion forces. Also, the stronger the bond, the harder it is to volatilize. Hope this answers the question.</span>
Answer:
7.468 kN
Explanation:
Here the force is given in Newton
Some of the prefixes of the SI units are
kilo = 10³
Mega = 10⁶
Giga = 10⁹
Tera = 10¹²
The number is 7468.0
Here, the only solution where the number of significant figures is kilo. If any other prefix is chosen then the significant figures will increase.
1 kilonewton = 1000 Newton


So, 7468 N = 7.468 kN
The answer is Ultraviolet
Answer:
Explanation:
Dear Student, this question is incomplete, and to attempt this question, we have attached the complete copy of the question in the image below. Please, Kindly refer to it when going through the solution to the question.
To objective is to find the:
(i) required heat exchanger area.
(ii) flow rate to be maintained in the evaporator.
Given that:
water temperature = 300 K
At a reasonable depth, the water is cold and its temperature = 280 K
The power output W = 2 MW
Efficiency
= 3%
where;



However, from the evaporator, the heat transfer Q can be determined by using the formula:
Q = UA(L MTD)
where;

Also;




LMTD = 4.97
Thus, the required heat exchanger area A is calculated by using the formula:

where;
U = overall heat coefficient given as 1200 W/m².K

The mass flow rate:
