The double replacement reaction
<h3>Further explanation</h3>
Given
Reaction if Na₂S + HCl
Required
Type of reaction
Solution
The double replacement reaction occurs when there is a displacement of the cations and anions of the reactants involved in the reaction to form two new compounds.
The general formula for this reaction :
AB + CD ⇒ AD + CB
At the bottom of the reaction, it is shown the number of atoms of each compound in the reactants and products which indicates the application of <em>the law of conservation of mass</em>, that the number of atoms in the reactants will be the same as the number of atoms in the product, so the reaction is said to be in a balanced state.
Triglyceride is a molecule constituted by one one molecule of glycerol and 3 molecules of fatty acids. The structure of a glycerol is like a letter "E", where the vertical line ( | ) is the glycerol and the three horizontal lines are long chains of organic acids, each with one COOH group, called fatty acids.<span> The answer is that the other 3 molecules that make up a triglyceride are fatty acids.</span>
We will assume helium to behave as an ideal gas and apply the ideal gas law:
PV = nRT
For pressure measured in atmospheres and volume measured in liters, the value of the molar gas constant is 0.082. Therefore:
T = PV / nR
T = (2.57 x 15.5) / (1.2 x 0.082)
T = 404.8 Kelvin
Answer: c. Salt and Water
Explanation:
For example;
When an Arrhenius acid such as; Tetraoxosulphate (VI) acid (H2SO4) reacts with an Arrhenius base such as Potassium hydroxide (KOH), the products formed in this neutralization reaction is a salt known as ''Potassium Sulphate'' (K2SO4) and ''Water'' (H2O).
H2SO4 + KOH -------------> K2SO4 + H2O