Answer:
1.60x10⁶ billions of g of CO₂
Explanation:
Let's calculate the production of CO₂ by a single human in a day. The molar mass of glucose is 180.156 g/mol and CO₂ is 44.01 g/mol. By the stoichiometry of the reaction:
1 mol of C₆H₁₂O₆ -------------------------- 6 moles of CO₂
Transforming for mass multiplying the number of moles by the molar mass:
180.156 g of C₆H₁₂O₆ ----------------- 264.06 g of CO₂
4.59x10² g ---------------- x
By a simple direct three rule:
180.156x = 121203.54
x = 672.77 g of CO₂ per day per human
So, in a year, 6.50 billion of human produce:
672.77 * 365 * 6.50 billion = 1.60x10⁶ billions of g of CO₂
The electronegativity of nitrogen (N) is 3.0, while the electronegativity of hydrogen (H) is 2.1. As it can be seen that nitrogen (N) is more electronegative than that of hydrogen (H),
So electron pairs are attracted towards nitrogen and thus it carries a partial negative charge and hydrogen carries a partial positive charge. The image of electron distribution is attached as follows.
Thus NH₃ is a polar molecule .
Answer: Decreasing the temperature inside the container will decrease the pressure of a gas inside a closed cubical container.
Explanation:
According to Gay-Lussac's Law : 'The pressure of the gas increases with increase in temperature of the gas when volume of the gas is kept constant'.

At constant volume, pressure of the gas will decrease on decreasing the temperature or vice versa.
Decreasing the temperature inside the container will decrease the pressure of a gas inside a closed cubical container.
Using ideal gas equation,

Here,
P denotes pressure
V denotes volume
n denotes number of moles of gas
R denotes gas constant
T denotes temperature
The values at STP will be:
P=1 atm
T=25 C+273 K =298.15K
V=663 ml=0.663L
R=0.0821 atm L mol ⁻¹
Mass of gas given=1.25 g g
Molar mass of gas given=?


Putting all the values in the above equation,

Molar mass of the gas=46.15