The noble gas notation is the short or abbreviated form of the electron configuration.
It means that you use the symbol of the previous noble gas as part of the electron configuration of an element.
The gas noble previous to antimony is Kr, so you do not use Xe to write the electron configuration of Sb.
The gas noble previous to radium is Rn, so you do not use Xe to wirte the electron configuration of Ra.
The gas noble previous to uranium is Rn, so you do not use Xe to write the electron configuration of U.
The gas noble previous to cesium is Xe, so you use Xe to write the noble notation for Sb. This is it: Cs: [Xe] 6s.
Answer: cesium
The ga
A chemical formula that indicates the kinds of atoms and the number of each kind in a molecule of a compound.
<span>Light
from the sun provides energy for life’s processes. It enables the primary
producers (photosynthetic organisms) such as phytoplankton
and plants to produce organic molecules from abiotic factors. This energy is passed up as primary and secondary
consumers consume these producers and this cycle
continues up the foods chain/web. </span>
When water at 50 C is added to ice at -12 C, heat is transferred from hot water to ice.
- Heat given out by water = Heat absorbed by ice
Calculating the heat released by hot water:
ΔT
Calculating heat absorbed by 16 g of ice: Ice at is converted to ice at and then ice at to water at
ΔT +
+
q = 405.12 J +5336.8 J =5741.92 J
- Heat given out by water = Heat absorbed by ice
-(
m = 27.4 g
Therefore, 27.4 g water at must be added to 16 g of ice at to convert to liquid water at
Answer:
True => ΔH°f for C₆H₆ = 49 Kj/mole
Explanation:
See Thermodynamic Properties Table in appendix of most college level general chemistry texts. The values shown are for the standard heat of formation of substances at 25°C. The Standard Heat of Formation of a substance - by definition - is the amount of heat energy gained or lost on formation of the substance from its basic elements in their standard state. C₆H₆(l) is formed from Carbon and Hydrogen in their basic standard states. All elements in their basic standard states have ΔH°f values equal to zero Kj/mole.