Answer:
To understand the utility in sequence comparison and in the search for proteins that have a common evolutionary origin, you need to be clear about some concepts about how to evolve proteins. The idea that is accepted is that throughout the evolution some species are giving rise to new ones. Behind this is the genetic variation of organisms, that is, the evolution of genomes and their genes, as well as the proteins encoded by them.
Explanation:
Three ways can be distinguished by which genes evolve, and by proteins: mutation, duplication and shuffling of domains. When differences between homologous protein sequences are observed, these differences change to do with the way of life of the organism, an example of this, bacteria that live in hot springs at very high temperatures have proteins with a very high denaturation temperature, and these proteins are usually richer in cysteines. On the other hand, the fact that in positions of the sequences they remain unchanged (preserved positions), means that these have a special importance for the maintenance of the structure or function of the protein and its modification has not been tolerated throughout of evolution
Answer:
Which sequence of events is required to form a limestone cave where you can walk around and observe cave formations, such as stalactites? (Note: stalactites hang from the ceiling - they have to hold on tight to the roof.)
A geological sequence of events as involving the lowering of the water table to expose cave structures where stalactites and stalagmites form which is described as follows,
Explanation:
1. Acidic percolated water formed cavities of solution beneath the natural water table known as phreatic zone
2. After the passage of time there is a drop in the water table dropped forming caves from cavities
3. These caves, which are air filled voids that contains adequate environment for forming stalactites and stalagmites and where they are found
∆H ° rxn =-2855.56 kJ
<h3>Further explanation</h3>
Given
ΔHf CO₂ = -393.5 kJ/mol
ΔHf H₂O = -241.82 kJ/mol
ΔHf C₂H₆ = - 84.68 kJ/mol
Reaction
2C2H6(g) + 7O2(g) -> 4CO2(g) + 6H2O(g)
Required
ΔHrxn=
Solution
<em>∆H ° rxn = ∑n ∆Hf ° (product) - ∑n ∆Hf ° (reactants) </em>
∆H ° rxn = (4.-393.5+6.-241.82)-(2.-84.68)
∆H ° rxn = (-1574-1450.92)-(-169.36)
∆H ° rxn =-3024.92+169.36
∆H ° rxn =-2855.56 kJ
Answer:
A.The concentration of water is greater outside the cell than inside the cell.
Explanation:
The contractile vacuole of certain organisms functions to regulate water flow in and out of the cell. It does this by storing excess water that comes into the cell. In the case of this organism with a filled up contractile vacuole, it means water is flowing into the cell.
Naturally, water will flow into a living cell when an osmotic gradient i.e. difference in concemtration, has been created between intracellular and extracellular solutions. Osmosis involves movement of substances from a region of high water concentration to a region of low water concentration. This means that if water is flowing into the cell, which is stored by the contractile vacuole, the concentration of water must be greater outside the cell than inside.