Answer:
A. The period of an oscillation does not depend upon amplitude.
Explanation:
The period of a spring-mass system is:
T = 1/f = 2π√(m/k)
where f is the frequency, m is the mass, and k is the spring constant.
The answer isn't B. There are no frictionless systems in the real world.
The answer isn't C or D. As shown, the frequency is a function of both the mass and the spring constant.
The answer isn't E. Turning motion into heat is not an advantage for a clock.
The correct answer is A. The period of the system does not depend on the amplitude.
Answer:
v ≈ 4.47
Explanation:
The Formula needed = <u>KE = </u>
<u> m v²</u>
<u></u>
Substitute with numbers known:
2000J =
× 200kg × v²
Simplify:
÷100 ÷100 (Divide by 100 on both sides)
2000J = 100 × v²
= v²
20 = v²
√ √ (Square root on both sides)
√20 = √v²
4.472135955 = v (Round to whatever the question asks)
v ≈ 4.47 (I rounded to 2 decimal places or 3 significant figures, as that is what it usually is)
While no one knows why, astronomers do now know that the solar nebula has collapsed. Scientists believed that our Solar system was made when gas and dust cloud was being disturbed by an explosion of supernova. Due to pressure, this cloud collapsed.
Answer:
Yes, the value of g affected by the radius.
Explanation:
The formula for the force of gravity of 2 objects is
, where m1 and m2 are the masses of the 2 objects, r is the radius, and G is the gravitational constant, which is approximately
.
Therefore, as the radius if bigger, the force of gravity is going to be smaller exponentially.
Encoding information occurs throughout forming memory and is the first step of the memory process.