Answer:


Explanation:
m = Mass of each the cars = 
= Initial velocity of first car = 3.46 m/s
= Initial velocity of the other two cars = 1.4 m/s
v = Velocity of combined mass
As the momentum is conserved in the system we have

Speed of the three coupled cars after the collision is
.
As energy in the system is conserved we have

The kinetic energy lost during the collision is
.
Explanation:
Equation for energy balance will be as follows.


Hence, 
Therefore, we will calculate the final temperature as follows.

= 868.03 R
Now, we will calculate the mass as follows.
m = 
= 
= 1.031 lbm
Hence,

Putting the values into the above equation as follows.


= 655.2 Btu
Thus, we can conclude that work done by paddle wheel is 655.2 Btu.
Answer:
Time take to fill the standing wave to the entire length of the string is 1.3 sec.
Explanation:
Given :
The length of the one end
, frequency of the wave
= 2.3 Hz, wavelength of the wave λ = 1 m.
Standing wave is the example of the transverse wave, standing wave doesn't transfer energy in a medium.
We know,
∴
λ
Where
speed of the standing wave.
also, ∴ 
where
time take to fill entire length of the string.
Compare above both equation,
⇒
sec

Therefore, the time taken to fill entire length 0f the string is 1.3 sec.
Answer : 413.44N
Here it is given that an elevator is moving down with an acceleration of 3.36 m/s² . And we are interested in finding out the apparent weight of a 64.2 kg man . For the diagram refer to the attachment .
- From the elevator's frame ( non inertial frame of reference) , we would have to think of a pseudo force.
- The direction of this force is opposite to the direction of acceleration the frame and its magnitude is equal to the product of mass of the concerned body with the acceleration of the frame .
- When a elevator accelerates down , the weight recorded is less than the actual weight .
From the Free body diagram ,
- Mass of the man = 64.2 kg
Could be easy for some people and hard for some people.