Answer:
1.87 A
Explanation:
τ = mean time between collisions for electrons = 2.5 x 10⁻¹⁴ s
d = diameter of copper wire = 2 mm = 2 x 10⁻³ m
Area of cross-section of copper wire is given as
A = (0.25) πd²
A = (0.25) (3.14) (2 x 10⁻³)²
A = 3.14 x 10⁻⁶ m²
E = magnitude of electric field = 0.01 V/m
e = magnitude of charge on electron = 1.6 x 10⁻¹⁹ C
m = mass of electron = 9.1 x 10⁻³¹ kg
n = number density of free electrons in copper = 8.47 x 10²² cm⁻³ = 8.47 x 10²⁸ m⁻³
= magnitude of current
magnitude of current is given as


= 1.87 A
Answer:
v = 120 m/s
Explanation:
We are given;
earth's radius; r = 6.37 × 10^(6) m
Angular speed; ω = 2π/(24 × 3600) = 7.27 × 10^(-5) rad/s
Now, we want to find the speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator.
The angle will be;
θ = ¾ × 90
θ = 67.5
¾ is multiplied by 90° because the angular distance from the pole is 90 degrees.
The speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator will be:
v = r(cos θ) × ω
v = 6.37 × 10^(6) × cos 67.5 × 7.27 × 10^(-5)
v = 117.22 m/s
Approximation to 2 sig. figures gives;
v = 120 m/s
Here refrigerator removes 55 kcal heat from freezer
Refrigerator releases 73.5 kcal heat to surrounding
So here we can use energy conservation principle by II Law of thermodynamics
the law says that

here we know that
= heat released to the surrounding
= heat absorbed from freezer
W = work done by the compressor
now using above equation we can write



So here compressor has to do 18.5 k cal work on it
The working equation would be Vf (final velocity) = Vi
(initial velocity) + a (acceleration) t (time). The given data are the initial
velocity (5.0 m/s), acceleration (-2.5 m/s^2, negative since it is said to
decelerate) and the final velocity (0 m/s, since it will put to a stop). The
time would be 2 seconds.