Answer:
a) The temperature of the beaker rises as this transfer of heat goes on.
b) Check Explanation.
Explanation:
a) The heat lost by the piece of metal is normally gained by the all the components that it comes in contact with after the heating procedure.
(Heat lost by piece of metal) = (Heat gained by the cold water) + (Heat gained by the beaker).
So, since heat is also gained by the Beaker, its temperature should rise under normal conditions.
That is essentially what the zeroth law of thermodynamics about thermal equilibrium talks about.
If two bodies are at thermal equilibrium with reach other and body 2 is in thermal equilibrium with a third body, then body 1 and body 3 are also in thermal equilibrium
Temperature of the piece of metal decreases, temperature of water rises and the temperature of the beaker rises as they all try to attain thermal equilibrium.
b) In calorimetry, the aim is usually for the water (in this case) to take up all of the heat supplied by the piece of metal. Hence, the calorimeter is usually heavily insulated (or properly called lagged). Thereby, reducing the amount of heat that the calorimeter would gain.
But in cases where the heat lost to the insulated calorimeter isn't negligible, the heat capacity of the calorimeter is usually obtained and included it is included in the heat transfer calculations.
Hope this Helps!!!
Maybe
A. 400 ml of 5.0% glucose solution
Answer:
unsaturated solution
Explanation:
This solution is made by the coffee, which is the solvent and the sugar, which is the solute. The solute dissolves in the solvent.
Sugar starts to precipitate because it cannot dissolve anymore. This means that the solution at the equilibrium point and is saturated. Since more coffee or solvent is added, the solution will now be able to dissolve more sugar. This means that the solution is unsaturated
Answer:
Hydride ion
Explanation:
You often see the reduction with NADH written as
NADH ⟶ NAD⁺ + H⁺ + 2e⁻
If you think about it, H⁺ + 2e⁻ is equivalent to H:⁻, so we could write the reaction as
NADH ⟶ NAD⁺ + H:⁻
In terms of a mechanism, the dihydropyridine ring of NADH transfers a hydrogen atom with its pair of electrons (a hydride ion) to the substrate and becomes the more stable, aromatic pyridinium ion in NAD⁺.
Given information :
G = 173.3 KJ
H = 180.7 KJ
T = 303.0 K
S = unknown (?)
By using the given formula : G = H - TS , we can calculate the value of 'S'
On rearranging the formula we get : S = 
Plug in the value of G , H and T in the above formula :
S = 
S = 0.02442 