1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nlexa [21]
3 years ago
15

PLS HEEEEEELPPPPPPPPP!!!!!!!!​

Physics
1 answer:
Sveta_85 [38]3 years ago
7 0

txt now you need to add to 14 to those two to get it between the 14 and 19 and basically you will just be able to do this the liquid is 45 as you know that's all I got to say for you is that you have to answer the phone for you equational to pay

You might be interested in
Which of the following items best embodies the physical property of conductivity?
Sladkaya [172]
C is the correct answer

7 0
3 years ago
Read 2 more answers
if a runners power is 400 watts as she runs, how much chemical energy does she convert into other forms in 10 minutes
AnnZ [28]

Answer:

Energy converted = 240000\,Joules = 240\, kJoules

Explanation:

Recall that Power is the rate at which energy is transferred therefore defined by the mathematical formula: Power\,=\,\frac{Energy\,transferred}{time}

Since the information on the power of the runner is given, as well as the time the energy conversion takes place, we can then use this equation to find how much energy is been converted. Notice that we just need to change the given time *10 minutes) into the appropriate units  (seconds)to get the answer in SI units of energy (Joules). The conversion of 10 minutes into seconds is done by multiplying : 10 minutes * 60 seconds/minute = 600 seconds.

We use this then to find the energy converted by the runner:

Power\,=\,\frac{Energy\,transferred}{time}\\400 \,W = \frac{E}{600\,sec} \\400 \,W * 600\,sec=E\\E=240000\,Joules = 240\, kJoules

3 0
3 years ago
A uniformly charged ball of radius a and charge –Q is at the center of a hollowmetal shell with inner radius b and outer radius
vlabodo [156]

Answer:

<u>r < a:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Qr}{a^3}

<u>r = a:</u>

E = \frac{1}{4\pi a^2}\frac{Q}{\epsilon_0}

<u>a < r < b:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

<u>r = b:</u>

E = \frac{1}{4\pi b^2}\frac{Q}{\epsilon_0}

<u>b < r < c:</u>

E = 0

<u>r = c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{c^2}

<u>r < c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

Explanation:

Gauss' Law will be applied to each region to find the E-field.

\int \vec{E}d\vec{a} = \frac{Q_{encl}}{\epsilon_0}

An imaginary sphere is drawn with radius r, which is equal to the point where the E-field is asked. The area of this imaginary sphere is multiplied by E, and this is equal to the charge enclosed by this imaginary surface divided by ε0.

<u>r<a:</u>

Since the ball is uniformly charged and not hollow, then the enclosed charge can be found by the following method: If the total ball has a charge -Q and volume V, then the enclosed part of the ball has a charge Q_enc and volume V_enc. Then;

\frac{Q}{V} = \frac{Q_{encl}}{V_{encl}}\\\frac{Q}{\frac{4}{3}\pi a^3} = \frac{Q_{encl}}{\frac{4}{3}\pi r^3}\\Q_{encl} = \frac{Qr^3}{a^3}

Applying Gauss' Law:

E4\pi r^2 = \frac{-Qr^3}{\epsilon_0 a^3}\\E = -\frac{1}{4\pi \epsilon_0}\frac{Qr}{a^3}\\E = \frac{r}{4\pi a^3}\frac{Q}{\epsilon_0}

The minus sign determines the direction of the field, which is towards the center.

<u>At r = a: </u>

E = \frac{1}{4\pi a^2}\frac{Q}{\epsilon_0}

<u>At a < r < b:</u>

The imaginary surface is drawn between the inner surface of the metal sphere and the smaller ball. In this case the enclosed charge is equal to the total charge of the ball, -Q.

<u />E4\pi r^2 = \frac{-Q}{\epsilon_0}\\E = -\frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}<u />

<u>At r = b:</u>

<u />E = -\frac{1}{4\pi b^2}\frac{Q}{\epsilon_0}<u />

Again, the minus sign indicates the direction of the field towards the center.

<u>At b < r < c:</u>

The hollow metal sphere has a net charge of +2Q. Since the sphere is a conductor, all of its charges are distributed across its surface. No charge is present within the sphere. The smaller ball has a net charge of -Q, so the inner surface of the metal sphere must possess a net charge of +Q. Since the net charge of the metal sphere is +2Q, then the outer surface of the metal should possess +Q.

Now, the imaginary surface is drawn inside the metal sphere. The total enclosed charge in this region is zero, since the total charge of the inner surface (+Q) and the smaller ball (-Q) is zero. Therefore, the Electric region in this region is zero.

E = 0.

<u>At r < c:</u>

The imaginary surface is drawn outside of the metal sphere. In this case, the enclosed charge is +Q (The metal (+2Q) plus the smaller ball (-Q)).

E4\pi r^2 = \frac{Q}{\epsilon_0}\\E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

<u>At r = c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{c^2}

3 0
3 years ago
What kind of energy does a flying bullet have?
Musya8 [376]
It mainly travels by kinetic energy
3 0
3 years ago
Read 2 more answers
9. A constant velocity means acceleration is
vampirchik [111]

Answer:

d. zero

Explanation:

Constant velocity means the acceleration is zero. In this case the velocity does not change,

hope this helps you

have a good day :)

6 0
2 years ago
Other questions:
  • How do you inhibitors work
    6·1 answer
  • Philip was diagnosed with __________ vestibular disorder, which is a dysfunction of the nervous system that processes balance. A
    10·2 answers
  • The number 14 is the 'mass number'. What does it tell us about this isotope?​
    6·1 answer
  • How to calculate motion​
    8·2 answers
  • Non renewable resources example ​
    11·1 answer
  • Fish are hung on a spring scale to determine their mass (most fishermen feel no obligation to report the mass truthfully). (a) W
    11·1 answer
  • If the mass of the body is tripled and its velocity becomes doubled, then the linear momentum of the body will​
    5·1 answer
  • In this picture there is a circuit and the boxes are circuit component please tell how many nodes are there in circuit?
    8·1 answer
  • An electromagnetic radio wave is received by a transmitter before it is converted to a sound wave. The radio wave has a waveleng
    9·1 answer
  • The dense atmosphere of venus is ________, causing most incoming solar radiation to be _________.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!