1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sonja [21]
3 years ago
13

A river flows due east at 1.70 m/s. A boat crosses the river from the south shore to the north shore by maintaining a constant v

elocity of 14.0 m/s due north relative to the water.
(a) What is the velocity of the boat relative to shore?
m/s
° (north of east)

(b) If the river is 340 m wide, how far downstream has the boat moved by the time it reaches the north shore in meters?
Physics
1 answer:
ad-work [718]3 years ago
5 0

Answer:

a)

v = 14.1028 m/s  

∅ = 83.0765° north of east

b)

the required distance is 40.98 m

Explanation:

Given that;

velocity of the river u = 1.70 m/s

velocity of boat v = 14.0 m/s

Now to get the velocity of the boat relative to shore;

( north of east), we say

a² + b² = c²

(1.70)² + (14.0)² = c²

2.89 + 196 = c²

198.89 = c²

c = √198.89

c = 14.1028 m/s  

tan∅ = v/u = 14 / 1.7 =  8.23529

∅ = tan⁻¹ ( 8.23529 ) = 83.0765° north of east

Therefore, the velocity of the boat relative to shore is;

v = 14.1028 m/s  

∅ = 83.0765° north of east

b)  

width of river = 340 m,

ow far downstream has the boat moved by the time it reaches the north shore in meters = ?

we say;

340sin( 90° - 83.0765°)

⇒ 340sin( 6.9235°)

= 40.98 m

Therefore, the required distance is 40.98 m

You might be interested in
A hydrogen atom that has an electron in the n = 2 state absorbs a photon. What wavelength must the photon possess to send the el
Deffense [45]

Answer:

486nm

Explanation:

in order for an electron to transit from one level to another, the wavelength emitted is given by Rydberg Equation which states that

\frac{1}{wavelength}=R.[\frac{1}{n_{f}^{2} } -\frac{1}{n_{i}^{2} }] \\n_{f}=2\\n_{i}=4\\R=Rydberg constant =1.097*10^{7}m^{-1}\\subtitiute \\\frac{1}{wavelength}=1.097*10^{7}[\frac{1}{2^{2} } -\frac{1}{4^{2}}]\\\frac{1}{wavelength}= 1.097*10^{7}*0.1875\\\frac{1}{wavelength}= 2.06*10^{6}\\wavelength=4.86*10{-7}m\\wavelength= 486nm\\

Hence the photon must possess a wavelength of 486nm in order to send the electron to the n=4 state

4 0
3 years ago
An object of mass 0.5 kg is swung in uniform circular motion. The radius is 2 meters, and the force exerted is 4 N. Calculate th
Katarina [22]
Using
F= mv²/r
4 = 0.5×v² / 2
8 /0.5 = v²
v²=16
v= √16
v= 4 ms-¹
8 0
3 years ago
The figure in Figure 1 shows two single-slit diffraction patterns. The distance between the slit and the viewing screen is the s
V125BC [204]

Answer:

"The wavelengths are the same for both. The width of slit 1 is larger than the width of slit 2."

Explanation:

The full question has not been provided, so I just copied this into the web and found this answer and explanation on quizlet:

"The wavelengths are the same for both. The width of slit 1 is larger than the width of slit 2.

D sin θ = m λ

if the wavelengths are the same, then if the angle is smaller, the slit width must be larger. The top photo shows a pattern that is more closely spaced. That means the angle is smaller. The slit width must be larger."

This answer/explanation should be correct, as we are looking at bright fringes and the formula being used corresponds to the parameters of the question.

Hope this helps!

8 0
1 year ago
ANYONE who is good with the consequences of Population growth PLEASE help me!!
alekssr [168]

in china, there is a family limit for only having 1 child

at 10 billion people on earth, we will most likely run out of food supply

4 0
3 years ago
Read 2 more answers
What is the highest degrees above the horizon the moon ever gets during the year in the Yakima Valley ?
Ivahew [28]

The trickiest part of this problem was making sure where the Yakima Valley is.
OK so it's generally around the city of the same name in Washington State.

Just for a place to work with, I picked the Yakima Valley Junior College, at the
corner of W Nob Hill Blvd and S16th Ave in Yakima.  The latitude in the middle
of that intersection is 46.585° North.  <u>That's</u> the number we need.

Here's how I would do it:

-- The altitude of the due-south point on the celestial equator is always
(90° - latitude), no matter what the date or time of day.

-- The highest above the celestial equator that the ecliptic ever gets
is about 23.5°. 

-- The mean inclination of the moon's orbit to the ecliptic is 5.14°, so
that's the highest above the ecliptic that the moon can ever appear
in the sky.

This sets the limit of the highest in the sky that the moon can ever appear.

90° - 46.585° + 23.5° + 5.14° = 72.1° above the horizon .

That doesn't happen regularly.  It would depend on everything coming
together at the same time ... the moon happens to be at the point in its
orbit that's 5.14° above ==> (the point on the ecliptic that's 23.5° above
the celestial equator).

Depending on the time of year, that can be any time of the day or night.

The most striking combination is at midnight, within a day or two of the
Winter solstice, when the moon happens to be full.

In general, the Full Moon closest to the Winter solstice is going to be
the moon highest in the sky.  Then it's going to be somewhere near
67° above the horizon at midnight.


5 0
3 years ago
Other questions:
  • Carbon-14 is a naturally-occuring, stable isotope that is commonly used is scientific studies as a tracer and to date artifacts.
    13·2 answers
  • The momentum of an object is determined to be 7.2 × 10-3 kg⋅m/s. Express this quantity as provided or use any equivalent unit. (
    12·1 answer
  • What evidence supported the Oscillating Big Bang?
    14·1 answer
  • Help please am stuck
    9·1 answer
  • A third wire of the same material has the same length and twice the diameter as the first. How far will it be stretched by the s
    11·1 answer
  • Who served as an interpreter for Lewis and Clark during their trip out west?
    14·2 answers
  • Second and third class levers are differentiated by __________.
    9·2 answers
  • How much power do you have if you do 3200 j of work in 18 seconds?
    6·2 answers
  • How much energy is needed to melt 150 g of ice at 0°C to water? (1)(Lf =3.34˟ 10⁵ J/Kg)
    8·1 answer
  • A truck covers 40.0 m in 7.80 s while uniformly slowing down to a final velocity of 1.70 m/s. Please provide with explanation an
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!