The atomic number is also the number of protons in the nucleus of an atom of a specific element, in this case Xenon. Xenon is represented on the periodic table as Xe. Find that and look at the number in the top center of the square for Xenon. In this case, the atomic number is 54.
Answer:
30.4 g. NH3
Explanation:
This problem tells us that the hydrogen (H2) is the limiting reactant, as there is "an excess of nitrogen." Using stoichiometry (the relationship between the various species of the equation), we can see that for every 3 moles of H2 consumed, 2 moles of NH3 are produced.
But before we can use that relationship to find the number of grams of ammonia produced, we need to convert the given grams of hydrogen into moles:
5.4 g x [1 mol H2/(1.008x2 g.)] = 2.67857 mol H2 (not using significant figures yet; want to be as accurate as possible)
Now, we can use the relationship between H2 and NH3.
2.67857 mol H2 x (2 mol NH3/3 mol H2) = 1.7857 mol NH3
Now, we have the number of moles of ammonia produced, but the answer asks us for grams. Use the molar mass of ammonia to convert.
1.7857 mol NH3 x 17.034 g. NH3/mol NH3 = 30.4 g. NH3 (used a default # of 3 sig figs)
Answer : The molarity after a reaction time of 5.00 days is, 0.109 M
Explanation :
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant = 
t = time taken = 5.00 days
[A] = concentration of substance after time 't' = ?
= Initial concentration = 0.110 M
Now put all the given values in above equation, we get:
![9.7\times 10^{-6}=\frac{1}{5.00}\left (\frac{1}{[A]}-\frac{1}{(0.110)}\right)](https://tex.z-dn.net/?f=9.7%5Ctimes%2010%5E%7B-6%7D%3D%5Cfrac%7B1%7D%7B5.00%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%280.110%29%7D%5Cright%29)
![[A]=0.109M](https://tex.z-dn.net/?f=%5BA%5D%3D0.109M)
Hence, the molarity after a reaction time of 5.00 days is, 0.109 M
Answer:
Explanation:
E = (hc)/(λ)
E = (6.624x10^(-27))Js x ((3×10^8)ms^(-1)) /
(77.8x10^(-9)m)
E = 2.55 x 10^(-11) J