Answer:
a. global warming
Explanation:
that's the definitain of global warming
Answer:
Velocity, V = 3t²- 28t+6
Displacement, s = t³ - 14t²+6t -8
At t = 5.8 s
s = -249.05 m
v = -55.48 m/s
At t = 12.7 s
s = -141.48 m
v = 134.27 m/s
Explanation:
We have acceleration of a particle is given by a = 6t - 28
Velocity

At t = 0 we have v₀ = 6 m/s
v₀ = 6 = 3 x 0 ²-28 x 0+C
C = 6
So velocity, V = 3t² - 28t+6
Displacement

At t = 0 we have s₀ = -8 m
s₀ = -8 = 0³ + 14 x 0² + 6 x 0 + C
C = -8
So displacement, s = t³ - 14t²+6t -8
At t = 5.8 s
s = 5.8³ - 14 x 5.8²+6 x 5.8 - 8 = -249.05 m
v = 3 x 5.8² - 28 x 5.8 + 6 = -55.48 m/s
At t = 12.7 s
s = 12.7³ - 14 x 12.7²+6 x 12.7 - 8 = -141.48 m
v = 3 x 12.7² - 28 x 12.7 + 6 = 134.27 m/s
Answer:
337k
Explanation:
First, let us find the difference between the given two temperatures.
Difference = 85°C - 21°C
= 64°C
<u>And now we have to write the temperature in kelvins.</u>
To convert Celcius to Kelvins you can add 273 to the temperature in Celcius.
<u>Let us find it now.</u>
64°C + 273 = 337k
Therefore,
64°C ⇒ <u>337k</u>
Answer:
hydrogen bridge
Explanation:
Joule's relationship to heat and temperature is true for all materials where we assume that interatomic forces are linear, when atoms separate these forces decrease. There is a point where the separation between atoms is enough that thermal agitation can separate the molecules and there is a change of state, generally from solid to liquid and from liquid to vapor. When these changes of state are occurring all the energy supplied is used to break the links, so the temperature does not change.
In the specific case of water, there is a bond called a hydrogen bridge that breaks around 4ºC, therefore, at this temperature there is a deviation from the curve since this link is being broken, this does not lead to a change of macroscopic state.
For the other temperatures the water behaves like the other bodies.
The gravitational potential energy will increase
Explanation:
The gravitational potential energy (GPE) of an object is the energy possessed by the object due to its position in a gravitational field.
Near the Earth's surface, the GPE of an object is given by

where
m is the mass of the object
g is the acceleration of gravity
h is the heigth of the object above the ground
From the equation, we see that the GPE is directly proportional to the mass: therefore, if the mass increases, the GPE will increase as well.
So, for the beanbag in this problem, when its mass increases, the GPE will increase as well.
Learn more about gravitational potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly