Answer:
A. (-8,-5)
Explanation:
If you fill in A you get
-5 + 5 = 2(-8+ 8)
0 = 0
So this point is on the line
Answer:
C
Explanation:
Using the two formulas q =CV and C =<em>∈A/d where q = charge, C = Capacitance, V =Voltage, ∈=permittivity of dielectric, A = area of plates and d = distance between plates. </em>Increasing the plate separation decreases the Capacitance thereby decreasing the charge also.
<span>5.3 cm/s
This is a matter of conservation of momentum. Since there's no mention of the puck rebounding, I will consider this to be a totally non-elastic collision. So, let's determine the starting momentum of the system.
Goalie is at rest, so his momentum is 0.
Puck is moving at 30.00 m/s with a mass of 0.16 kg, so:
30.00 m/s * 0.16 kg = 4.8 kg*m/s
So the starting momentum is 4.8 kg*m/s moving towards the goal. After the collision, the puck and goalie will have the same momentum. So figure out the mass of the new system:
90.00 kg + 0.16 kg = 90.16 kg
And divide the system momentum by the system mass:
4.8 kg*m/s / 90.16 kg = 0.053238687 m/s
Finally, round to the least precise datum, so the result to 2 significant figures is 0.053 m/s, or 5.3 cm/s.</span>
I think it will go down like decrease minus or whatever you call it
Answer:
1125.66956 N
Explanation:
m = Mass of stunt performer
g = Acceleration due to gravity = 9.81 m/s²
v = Velocity of the swing = 7 m/s
T = Tension
r = Radius of the swing = Length of vine = 11.5 m
From the free body diagram

The minimum tension force the vine must be able to support without breaking is 1125.66956 N