To solve this problem we will use Henry's law. This law states that at a constant temperature, the amount of gas dissolved in a liquid is directly proportional to the partial pressure exerted by that gas on the liquid. Mathematically it is formulated as follows:

Where,
= Henry's constant for C02 at 25°C is equal to 
C = Gas concentration is 0.19M
Replacing we have,


Therefore the pressure of carbon dioxide is 5.277 atm
Answer:
It’s 7 hours
Explanation:
You have to use the formula your teacher has given to you plug in the numbers then solve be sure to use a calculator made for physics it helps a lot :)
Answer:
2 is the numerical answer.
Explanation:
Hello there!
In this case, according to the given information and formula, it is possible for us to remember that equation for the calculation of the average kinetic energy of a gas is:

Whereas R is the universal gas constant, NA the Avogadro's number and T the temperature.
Which means that for the given ratio, we can obtain the value as follows:

Regards!
Answer:
A
Explanation:
You can get alot of info from it then again the info could be misleading
Answer:
B
Explanation:
You can get some good info from the internet but its most likely the wrong info
Answer:
c
Explanation:
It informs you with the info you need then again you are most likely getting socialy forced information.
Answer:
The driver was not telling the truth because it is not possible for a car to hit another car from behind and generate a force to the sides that deflects it from its path.
Explanation:
First, we analyze the driver's statement.
The driver when arriving at the curve, is collided from behind by another car and deviates from his path and crashes into a tree. For the car to go to the tree there must be a force towards the tree.
The net force that causes the car to deviate must be formed by the sum of the motion vector of the first car plus the force that is directed towards the tree.
Here we verify that a car hitting from behind will not generate a force to the sides, but will generate a force in the same direction that the car moves, forward.