Answer:
B
Explanation:
The net force is the force between action and reaction and when this forces are not the same an acceleration is spurred.
Answer:
The maximum height above the point of release is 11.653 m.
Explanation:
Given that,
Mass of block = 0.221 kg
Spring constant k = 5365 N/m
Distance x = 0.097 m
We need to calculate the height
Using stored energy in spring
...(I)
Using gravitational potential energy
....(II)
Using energy of conservation




Where, k = spring constant
m = mass of the block
x = distance
g = acceleration due to gravity
Put the value in the equation


Hence, The maximum height above the point of release is 11.653 m.
Answer:
D.-4.798m/s
Explanation:
Greetings !
Given values

Solve for V of the given expression
Firstly, recall the velocity-time equation

plug in known values to the equation

solve for final velocity

Hope it helps!
Answer:
A police car with its siren on is driving towards you, and you perceive the pitch of the siren to increase.
Explanation:
In Physics, Doppler effect can be defined as the change in frequency of a wave with respect to an observer in motion and moving relative to the source of the wave.
Simply stated, Doppler effect is the change in wave frequency as a result of the relative motion existing between a wave source and its observer.
The term "Doppler effect" was named after an Austrian mathematician and physicist known as Christian Johann Doppler while studying the starlight in relation to the movement of stars.
<em>The phenomenon of Doppler effects is generally applicable to both sound and light. </em>
An example of the Doppler effect is a police car with its siren on is driving towards you, and you perceive the pitch of the siren to increase. This is so because when a sound object moves towards you, its sound waves frequency increases, thereby causing a higher pitch. However, if the sound object is moving away from the observer, it's sound waves frequency decreases and thus resulting in a lower pitch.
<em>Other fields were the Doppler effects are applied are; astronomy, flow management, vibration measurement, radars, satellite communications etc. </em>