Answer:
P = 4.5 watts
Explanation:
Given that,
EMF of the circuit, E = 3 volt
The resistance of the resistors, R = 2 ohms
We need to find the power of this circuit. The relation between power, emf and resistance is given by the formula as follows :

Substitute all the values,

So, the power of this circuit is equal to 4.5 watts.
Explanation:
It is given that,
Mass of lithium, 
It is accelerated through a potential difference, V = 224 V
Uniform magnetic field, B = 0.724 T
Applying the conservation of energy as :


q is the charge on an electron

v = 78608.58 m/s

To find the radius of the ion's path in the magnetic field. The centripetal force is balanced by the magnetic force as :



r = 0.0078 meters
So, the radius of the path of the ion is 0.0078 meters. Hence, this is the required solution.
Answer:
Closely fits into the connector.
Explanation:
It's one of the steps used for the splicing of aluminium conductors in the underground connections. Where we do the strip insulation to splice the conductors by using compression type connectors.
It could result in it not being good for your joints, as well as in the long run but shouldn't cause problems when your a child. I hope this helps your question!
Answer:
speed wind Vw = 54.04 km / h θ = 87.9º
Explanation:
We have a speed vector composition exercise
In the half hour the airplane has traveled X = 108 km to the west, but is located at coordinated 119 km west and 27 km south
Let's add the vectors in each coordinate axis
X axis (East-West)
-Xvion - Xw = -119
Xw = -Xavion + 119
Xw = 119 -108
Xwi = 1 km
Calculate the speed for time of t = 0.5 h
Vwx = Xw / t
Vwx= 1 /0.5
Vwx = - 2 km / h
Y Axis (North-South)
Y plane - Yi = -27
Y plane = 0
Yw = 27 km
Vwy = 27 /0.5
Vwy = 54 km / h
Let's use the Pythagorean theorem and trigonometry to compose the answer
Vw = √ (Vwx² + Vwy²)
Vw = R 2² + 54²
Vw = 54.04 km / h
tan θ = Vwy / Vwx
tan θ = 54/2 = 27
θ = Tan⁻¹ 1 27
θ = 87.9º
The speed direction is 87. 9th measure In the third quadrant of the X axis in the direction 90-87.9 = 2.1º west from the south