Answer:
Gravity is dependent on the mass of two bodies and the distance between them. There is a strong gravitational attraction between Earth and the Moon because they’re relatively close to one another. There is a strong gravitational attraction between Earth and the Sun because the Sun is so massive
Answer:
B. If the container is cooled, the gas particles will lose kinetic energy and temperature will decrease.
C. If the gas particles move more quickly, they will collide more frequently with the walls of the container and pressure will increase.
E. If the gas particles move more quickly, they will collide with the walls of the container more often and with more force, and pressure will increase.
#FreeMelvin
Answer:
Nature of Sound Waves Sound is a wave that is created by <u>perturbations</u> and propagated through a <u>medium</u> from one location to another. Type of Wave: <u>longitudinal wave</u><u>.</u> A sound wave consists of a repeating pattern of high-pressure and low-pressure regions moving through a medium Sound needs a <u>medium of propagation</u> and a <u>disturbance.</u> Like any wave, the speed of a sound wave refers to how fast the disturbance is passed from particle to particle. Anatomy of a Wave:
Answer:
Mechanical waves require a medium to transfer their energy.
What are examples of mechanical waves?
Explanation:
Mechanical waves require a medium to transfer their energy.
What are examples of mechanical waves?
Answer:
Proof in explanataion
Explanation:
The basic dimensions are as follows:
MASS = M
LENGTH = L
TIME = T
i)
Given equation is:

where,
H = height (meters)
u = speed (m/s)
g = acceleration due to gravity (m/s²)
Sin Ф = constant (no unit)
So there dimensions will be:
H = [L]
u = [LT⁻¹]
g = [LT⁻²]
Sin Ф = no dimension
Therefore,
![[L] = \frac{[LT^{-1}]^2}{[LT^{-2}]}\\\\\ [L] = [L^{(2-1)}T^{(-2+2)}]](https://tex.z-dn.net/?f=%5BL%5D%20%3D%20%5Cfrac%7B%5BLT%5E%7B-1%7D%5D%5E2%7D%7B%5BLT%5E%7B-2%7D%5D%7D%5C%5C%5C%5C%5C%20%5BL%5D%20%3D%20%5BL%5E%7B%282-1%29%7DT%5E%7B%28-2%2B2%29%7D%5D)
<u>[L] = [L]</u>
Hence, the equation is proven to be homogenous.
ii)

where,
F = Force = Newton = kg.m/s² = [MLT⁻²]
G = Gravitational Constant = N.m²/kg² = (kg.m/s²)m²/kg² = m³/kg.s²
G = [M⁻¹L³T⁻²]
m₁ = m₂ = mass = kg = [M]
r = distance = m = [L]
Therefore,
![[MLT^{-2}] = \frac{[M^{-1}L^{3}T^{-2}][M][M]}{[L]^2}\\\\\ [MLT^{-2}] = [M^{(-1+1+1)}L^{(3-2)}T^{-2}]\\\\](https://tex.z-dn.net/?f=%5BMLT%5E%7B-2%7D%5D%20%3D%20%5Cfrac%7B%5BM%5E%7B-1%7DL%5E%7B3%7DT%5E%7B-2%7D%5D%5BM%5D%5BM%5D%7D%7B%5BL%5D%5E2%7D%5C%5C%5C%5C%5C%20%5BMLT%5E%7B-2%7D%5D%20%3D%20%5BM%5E%7B%28-1%2B1%2B1%29%7DL%5E%7B%283-2%29%7DT%5E%7B-2%7D%5D%5C%5C%5C%5C)
<u>[MLT⁻²] = [MLT⁻²]</u>
Hence, the equation is proven to be homogenous.