There are 2 covalent bonds between the Nitrogen and Oxygen, and 1 between the Nitrogen and Chlorine.
It should be 3.
Answer:

Explanation:
You don't give the reaction, but we can get by just by balancing atoms of Na.
We know we will need the partially balanced equation with masses, moles, and molar masses, so let’s gather all the information in one place.
M_r: 142.04
2NaOH + … ⟶ Na₂SO₄ + …
n/mol: 0.75
1. Use the molar ratio of Na₂SO₄ to NaOH to calculate the moles of NaF.
Moles of Na₂SO₄ = 0.75 mol NaOH × (1 mol Na₂SO₄/2 mol NaOH
= 0.375 mol Na₂SO₄
2. Use the molar mass of Na₂SO₄ to calculate the mass of Na₂SO₄.
Mass of Na₂SO₄ = 0.375 mol Na₂SO₄ × (142.04 g Na₂SO₄/1 mol Na₂SO₄) = 53 g Na₂SO₄
The reaction produces
of Na₂SO₄.
One can tell by looking at the titration curve of an acid and base whether the acid used is a strong acid or a weak acid. For a titration of a strong acid and a strong base, the pH at the equivalence point will be neutral, that is, pH 7. If the titration involves a weak acid and a strong base, the pH at the equivalence point will not be neutral, the solution will be basic at the equivalence point.
Answer:
2 mol H₂O
Explanation:
With the reaction,
- 2H₂(g) + O₂(g) → 2 H₂O(g)
1.55 moles of O₂ would react completely with ( 2*1.55 ) 3.1 moles of H₂. There are not as many moles of H₂, thus H₂ is the limiting reactant.
Now we <u>calculate the moles of H₂O produced</u>, <em>starting from the moles of limiting reactant</em>:
- 2.00 mol H₂ *
= 2 mol H₂O