1s22s22p63s23p64s23d5 is the correct answer.
Answer:
distance = 7 miles
displacement = 5 miles
Explanation:
Distance is a scalar quantity as it takes account of magnitude traveled but not the direction traveled from starting point.
The distance traveled is the sum total of distances moved
distance = 4 + 3 = 7 miles
Displacement however, is a vector and measure the shortest possible distance traveled in a given direction from the starting point.
The path of Elvis' walking forms a right-angle triangle with the hypotenuse being the displacement and the other two sides being the distance traveled west and south.
Using Pythagoras' theorem; c² = a² + b²
where c = hypotenuse and a and b are the other two sides
c² = 4² + 3²
c² = 16 + 9 = 25
√c² = √25
c = 5
Therefore, displacement = 5 miles
Answer: All organic compound depends on H-bonding with water. more stronger H-bonding with water more will be soluble.
Explanation:
1. It depends primarily upon the function groups of that compound. It also depends on the size of the compound.
2. some organic compound which soluble in water for example: alcohols, ethers, carboxylic acids. Because of the functional groups attached to the organic structure (the C-H backbone) are what effect the solubilities.Like carboxylic acids and alcohols form hydrogen bonds with the water, helping to solubilize it.
3. Take alcohols for example: methanol, ethanol, and isopropanol are all completely soluble in water. By the time you get to butanol and some of the larger alcohols, including those with more complex structures, they tend to be less soluble.
at equilibrium.
<h3>Explanation</h3>
Concentration for each of the species:
There was no Y to start with; its concentration could only have increased. Let the change in
be
.
Make a
table.
Two moles of X will be produced and two moles of Z consumed for every one mole of Y produced. As a result, the <em>change</em> in
will be
and the <em>change</em> in
will be
.
.
Add the value in the C row to the I row:
.
What's the equation of
for this reaction? Raise the concentration of each species to its coefficient. Products go to the numerator and reactants are on the denominator.
.
. As a result,
.
.
The degree of this polynomial is three. Plot the equation
on a graph and look for any zeros. There's only one zero at
. All three concentrations end up greater than zero.
Hence the equilibrium concentration of Y:
.
If you would draw the Lewis structures of these atoms, you would see that A has 2 electron pairs and 2 lone electrons (that can bond). For B you’d see that you only have 1 electron that can form a bond. This means that 1 atom of A (2 lone electrons) can bond with 2 atoms of B. To know the kind of bond you have to know wether or not there will be a ‘donation’ of an electron from one atom to another. This happens when the number of electrons on one atoms is equal to the number of electrons another atom needs to reach the noble gas structure. As you can see, this is not the case here. This means that you get an AB2 structure with covalent character.