Molar volume is a property of a component in a solution. It is defined as the volume occupied by one mole of the component in the closed system. You would not expect all solutions to execute volume additivity because intermolecular forces between the components come into play. There is no such thing as conservation of volume.
Vapor pressure affects molar volume because gases are very sensitive by these process conditions. Vapor pressure is very temperature-dependent. Consequently, at a different temperature, your component could expand or compress, thus, affecting the molar volume. Moreover, the pressure affects the molecular collisions in the system.
The correct answer is C the suns energy from the earth
Answer:
Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. It is a silvery-white, soft, non-magnetic and ductile metal in the boron group. ... Aluminium is remarkable for its low density and its ability to resist corrosion through the phenomenon of passivation.
Explanation:
i did aluminum chemistry
Answer:
See explanation
Explanation:
The question is incomplete because the images of the models are absent. However, i will try to give you a general description of what the correct answer should be.
Beryllium is a member of group 2 in the periodic table. Beryllium has an atomic number of 4. This implies that it has four protons in its nucleus and four electrons in its shells. In a neutral atom, the number of electrons on the shells is equal to the number of protons in the nucleus.
The electronic configuration of Beryllium is 1s2 2s2. This implies that it should have two shells each containing only two electrons each.
Since we are using white foam balls for protons and black foam balls for neutrons, the clear plastic will contain four white foam balls and five black foam balls since the mass number of beryllium is 9 and number of neutrons = mass number - number of protons.
Four blue foam balls hanging from strings will represent the electrons around the nucleus.
Any model that corresponds to the description above is the correct answer.