They are at equilibrium naturally. They do not easily get attacked by acids and are virtually impossible to oxidize due to their stable nature.
Constraints refers to demarcations of geometrical charecteristics between two or more entities or solid modeling bodies
Africa, South America, Antarctica, Australia, and the subcontinent of India would be the answer…
One chemical reaction is called the Haber process, a method for preparing ammonia by reacting nitrogen gas with hydrogen gas:
This equation shows you what happens in the reaction, but it doesn’t show you how much of each element you need to produce the ammonia. To find out how much of each element you need, you have to balance the equation — make sure that the number of atoms on the left side of the equation equals the number of atoms on the right.
You know the reactants and the product for this reaction, and you can’t change them. You can’t change the compounds, and you can’t change the subscripts, because that would change the compounds.
So the only thing you can do to balance the equation is add coefficients, whole numbers in front of the compounds or elements in the equation. Coefficients tell you how many atoms or molecules you have.
For example, if you write the following, it means you have two water molecules:
Each water molecule is composed of two hydrogen atoms and one oxygen atom. So with two water molecules (represented above), you have a total of 4 hydrogen atoms and 2 oxygen atoms.
You can balance equations by using a method called balancing by inspection. You take each atom in turn and balance it by adding appropriate coefficients to one side or the other.
With that in mind, take another look at the equation for preparing ammonia: HOPE THIS HELPS
We can determine the empirical formula by first converting each of the grams to moles. remember to do this, first, we need the molar mass of the molecules which can be calculated by adding the mass of the atoms from the periodic table.
molar mass of CO2= 44.0 g/mol
molar mass of H2O= 18.02 g/mol
now, lets determine the grams of each atom
Carbon: 23.98 g x (12.011 g / 44.01 g) = 6.54 g C
Hydrogen: 4.91 g x (2.0158 g / 18.02 g) = 0.55 g H
Oxygen: 10.0 - (6.54 + 0.55) = 2.91 g O
Now let's convert each mass to moles.
C: 6.54 g / 12.01 g / mol = 0.54 mol
H: 0.55 g / 1.01 g/mol = 0.54 mol
O: 2.91 g / 16.00 g/mol = 0.18 mol
now that we have the moles of each atom, we need to divide them by the smallest value to find the ration. If you do not get the whole number, you need to multiply until to get a whole number.
C: 0.54 mol / 0.18 mol = 3
H: 0.54 mol / 0.18 mol = 3
O: 0.18 mol / 0.18 mol = 1
empirical formula--> C₃H₃O