Answer:
800000
Explanation:
i think 800000 grams are in it.
Answer:
874.89 mmHg
Explanation:
Using the combined gas law equation as follows:
P1V1/T1 = P2V2/T2
Where;
P1 = initial pressure (mmHg)
P2 = final pressure (mmHg)
V1 = initial volume (L)
V2 = final volume (L)
T1 = initial temperature (K)
T2 = final temperature (K)
Based on the information provided in this question;
P1 = 950 mm Hg
P2 = ?
V1 = 25 L
V2 = 30 L
T1 = 155°C = 155 + 273 = 428K
T2 = 200°C = 200 + 273 = 473K
Using P1V1/T1 = P2V2/T2
950 × 25/428 = P2 × 30/473
23750/428 = 30P2/473
55.49 = 0.063P2
P2 = 55.49 ÷ 0.063
P2 = 874.89 mmHg
Answer:
This reaction has infinite ways to be balanced
Explanation:
To balance this equation we can use the algebraic method:
N2O4(g) + CO → NO(g) + CO2(g)+NO2(g)
Where we write each molecule as a letter:
A + B → C + D + E
Then, we write the equations according the number of atoms of each molecule. That is:
Oxygen → 4A + B = C + 2D + 2E <em>(1)</em>
Nitrogen → 2A = C + E <em>(2)</em>
Carbon → B = D <em>(3)</em>
Then, we have to give 1 arbitral number for a letter. For example:
B = 1; D = 1
<em>(1) </em>4A + 1 = C + 2 + 2E
4A = C + 2E + 1
2A = C + E <em>(2) </em>Twice <em>(2):</em>
4A = 2C + 2E
Subtracting <em>(1) </em>in <em>(2)</em>
C + 2E + 1 = 2C + 2E
C + 1 = 2C
1 = C
Si 1 = C:
4A + 1 = 1 + 2 + 2E
4A = 2 + 2E <em>(1)</em>
y:
2A = 1 + E <em>(2)</em>
Twice:
4A = 2 + 2E
As <em>(1) </em>and <em>(2) </em>are the same equation:
<h3>This reaction has infinite ways to be balanced</h3><h3 />
For example:
N2O4(g) + CO → NO(g) + CO2(g)+NO2(g)
An increase in thermal energy, changes the state of matter from solid to liquid to gas.