Answer:
V = 31.62 m V
Explanation:
Given,
Voltage across thick membrane = ?
Thickness of the membrane, d = 5.5 n m
Electric field = 5.75 M V/m
we know

V = E d
V = 5.75 x 10⁶ x 5.5 x 10⁻⁹
V = 31.62 x 10⁻³ V
V = 31.62 m V
Hence, The Voltage across the membrane is equal to 31.62 m V.
Answer:
a = 7.35 ft / s²
Explanation:
For this exercise we must use the kinematics relations
x = v₀ t + ½ a t²
as the runner leaves the starting line his initial velocity is zero
x = ½ a t²
a =
let's reduce the distance to foot
x = 60 yd (3ft / 1yd) = 180 ft
let's calculate
a = 2 180 / 7²
a = 7.35 ft / s²
Answer:
Explanation:
The magnitude of the acceleration makes an angle of 30° with the tangential velocity.
Resolving the acceleration to tangential and radial acceleration
at = aCos30 = √3a/2
ar = aSin30 = ½a
a = 2•ar
Then, the tangential acceleration is the linear acceleration, so the relationship between the tangential acceleration and angular acceleration is given as:
at = Rα
Then, α = at/R
since at = √3a/2
Then, α = √3 at/2R, equation 1
The radial acceleration is given as
ar = ω²R
Note that, at² + ar² = a²
at = √(a²-ar²)
Back to equation 1
α = √3 at/2R
α = √3√(a²-ar²)/2R
α = √3√(a²-(w²R)²)/2R
α = √3(a²-w⁴R²) / 2R
Also, a = 2•ar = 2w²R
Then,
α = √3((2w²R)²-w⁴R²) / 2R
α = √3(4w⁴R²-w⁴R²) / 2R
α = √3(3w⁴R²) / 2R
α = √9w⁴R² / 2R
α = 3w²R / 2R
α = 3w²/2
Answer:
D. Ted expanded more power.
Explanation:
Given the following data;
For Ted.
Force = 10N
Height = 1.5m
Time = 1 seconds
To find Ted's power;
Power = workdone/time
But workdone = force * distance
Workdone = 10 * 1.5
Workdone = 15 Nm
Power = 15/1
Power = 15 Watts.
For Johnny.
Force = 10N
Height = 1.5m
Time = 2 seconds
To find Ted's power;
Power = workdone/time
But workdone = force * distance
Workdone = 10 * 1.5
Workdone = 15 Nm
Power = 15/2
Power = 7.5 Watts
Therefore, from the calculations we can deduce and conclude that Ted expanded more power.
Explanation:
1D motion is motion in only one direction. To put it simply, it's motion along a line. For example, a train on a straight track has 1D motion.
2D motion is motion in two directions. A good example of this is a projectile launched at an angle. It has both vertical motion and horizontal motion.