Answer:
did you mean moles? If so, answer is down below.
Explanation:
there are 0.106 moles of glucose in 19.1 g of glucose.
Answer:
Balance molecular equation:
K2CO3(aq) + Sr(NO3)2(aq) → SrCO3(s) + 2KNO3(aq)
Net ionic equation:
CO3∧-2(aq) + Sr∧+2(aq) → SrCO3(s)
Explanation:
Potassium carbonate = K2CO3
Strontium nitrate = Sr(NO3)2
Chemical equation:
K2CO3 + Sr(NO3)2 → SrCO3 + KNO3
Balance chemical equation with physical states:
K2CO3(aq) + Sr(NO3)2(aq) → SrCO3(s) + 2KNO3(aq)
Ionic equation:
2K+(aq) + CO3∧-2(aq) + Sr∧+2(aq) + 2NO∧-3(aq) → SrCO3(s) + 2K+(aq) + 2NO∧-3(aq)
Net ionic equation:
CO3∧-2(aq) + Sr∧+2(aq) → SrCO3(s)
2K+ and 2NO∧-3 ions are spectator ions that's way these are not written in net ionic equation.
Spectator ions:
These are the ions that are present same on both side of chemical reaction and does not effect the equilibrium.
The rate constant of the reaction K we can get it from this formula:
K=㏑2/ t1/2 and when we have this given (missing in question):
that we have one jar is labeled t = 0 S and has 16 yellow spheres inside and the jar beside it labeled t= 10 and has 8 yellow spheres and 8 blue spheres and the yellow spheres represent the reactants A and the blue represent the products B
So when after 10 s and we were having 16 yellow spheres as reactants and becomes 8 yellow and 8 blue spheres as products so it decays to the half amount so we can consider T1/2 = 10 s
a) by substitution in K formula:
∴ K = ㏑2 / 10 = 0.069
The amount of A (the reactants) after N half lives = Ao / 2^n
b) so no.of yellow spheres after 20 s (2 half-lives) = 16/2^2 = 4
and the blue spheres = Ao - no.of yellow spheres left = 16 - 4 = 12
c) The no.of yellow spheres after 30 s (3 half-lives) = 16/2^3 = 2
and the blue spheres = 16 - 2 = 14
The correct answer is high temperature solids