1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nookie1986 [14]
3 years ago
15

To do the same amount of work in less time you need to

Physics
1 answer:
Dima020 [189]3 years ago
5 0

Answer:

requires more power

Explanation:

You might be interested in
When the voltage and current have _____ polarities in a pure capacitive circuit, the capacitor is discharging and the energy is
tangare [24]

Answer:opposite

Explanation:for a capacitor to discharge (after charging) the polarities of the current and voltage have to be reversed

6 0
3 years ago
A particle is moving with (SHM) of period 8.0s and amplitude5.0m
nadezda [96]

Answer:

velocity(x)=15\,\frac{\pi}{4}\,cos(\frac{\pi}{4}x)

Max speed = \frac{15\, \pi}{4} \,\, \frac{m}{s}

Max acceleration = \frac{15\,\pi^2}{16} \,\,\frac{m}{s^2}

Explanation:

Given the description of period and amplitude, the SHM could be described by:

f(x)=5\,sin(\frac{\pi}{4}x)

and its angular velocity can be calculated doing the derivative:

f(x)=5\, \,sin(\frac{\pi}{4}x)\\f'(x)=5\,\frac{\pi}{4}\,cos(\frac{\pi}{4}x)

And therefore, the tangential velocity is calculated by multiplying this expression times the radius of the movement (3 m):

velocity(x)=15\,\frac{\pi}{4}\,cos(\frac{\pi}{4}x)  and is given in m/s.

Then the maximum speed is obtained when the cosine function becomes "1", and that gives:

Max speed = \frac{15\, \pi}{4} \,\, \frac{m}{s}

The acceleration is found from the derivative of the velocity expression, and therefore given by:

acceleraton(x)=-15\,\frac{\pi^2}{16}\,sin(\frac{\pi}{4}x)

and the maximum of the function will be obtained when the sine expression becomes "-1", which will render:

Max acceleration = \frac{15\,\pi^2}{16} \,\,\frac{m}{s^2}

6 0
3 years ago
What’s the unit for velocity?
torisob [31]

Answer:

meter per second

Explanation:

It could be any other unit such as yard or feet, put it will be whatever measure per second or whatever time.

Examples

feet per second

miles per hour

4 0
3 years ago
How many joules of work are done on an object when a force of 10 N pushes it 5 m?
zhenek [66]

Answer:

option C

Explanation:

given,                            

Force on the object = 10 N

distance of push = 5 m

Work done = ?              

we know,              

work done is equal to Force into displacement.

W = F . s            

W = 10 x 5              

W = 50 J                

Work done by the object when 10 N force is applied is equal to 50 J

Hence, the correct answer is option C

5 0
3 years ago
A closely wound, circular coil with a diameter of 4.30 cm has 470 turns and carries a current of 0.460 A .
Nadusha1986 [10]

Hi there!

a)
Let's use Biot-Savart's law to derive an expression for the magnetic field produced by ONE loop.

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} \times \hat{r}}{r^2}

dB = Differential Magnetic field element

μ₀ = Permeability of free space (4π × 10⁻⁷ Tm/A)

R = radius of loop (2.15 cm = 0.0215 m)

i = Current in loop (0.460 A)

For a circular coil, the radius vector and the differential length vector are ALWAYS perpendicular. So, for their cross-product, since sin(90) = 1, we can disregard it.

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l}}{r^2}

Now, let's write the integral, replacing 'dl' with 'ds' for an arc length:
B = \int \frac{\mu_0}{4\pi} \frac{ids}{R^2}

Taking out constants from the integral:
B =\frac{\mu_0 i}{4\pi R^2}  \int ds

Since we are integrating around an entire circle, we are integrating from 0 to 2π.

B =\frac{\mu_0 i}{4\pi R^2}  \int\limits^{2\pi R}_0 \, ds

Evaluate:
B =\frac{\mu_0 i}{4\pi R^2}  (2\pi R- 0) = \frac{\mu_0 i}{2R}

Plugging in our givens to solve for the magnetic field strength of one loop:

B = \frac{(4\pi *10^{-7}) (0.460)}{2(0.0215)} = 1.3443 \mu T

Multiply by the number of loops to find the total magnetic field:
B_T = N B = 0.00631 = \boxed{6.318 mT}

b)

Now, we have an additional component of the magnetic field. Let's use Biot-Savart's Law again:
dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} \times \hat{r}}{r^2}

In this case, we cannot disregard the cross-product. Using the angle between the differential length and radius vector 'θ' (in the diagram), we can represent the cross-product as cosθ. However, this would make integrating difficult. Using a right triangle, we can use the angle formed at the top 'φ', and represent this as sinφ.  

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} sin\theta}{r^2}

Using the diagram, if 'z' is the point's height from the center:

r = \sqrt{z^2 + R^2 }\\\\sin\phi = \frac{R}{\sqrt{z^2 + R^2}}

Substituting this into our expression:
dB = \frac{\mu_0}{4\pi} \frac{id\vec{l}}{(\sqrt{z^2 + R^2})^2} }(\frac{R}{\sqrt{z^2 + R^2}})\\\\dB = \frac{\mu_0}{4\pi} \frac{iRd\vec{l}}{(z^2 + R^2)^\frac{3}{2}} }

Now, the only thing that isn't constant is the differential length (replace with ds). We will integrate along the entire circle again:
B = \frac{\mu_0 iR}{4\pi (z^2 + R^2)^\frac{3}{2}}} \int\limits^{2\pi R}_0, ds

Evaluate:
B = \frac{\mu_0 iR}{4\pi (z^2 + R^2)^\frac{3}{2}}} (2\pi R)\\\\B = \frac{\mu_0 iR^2}{2 (z^2 + R^2)^\frac{3}{2}}}

Multiplying by the number of loops:
B_T= \frac{\mu_0 N iR^2}{2 (z^2 + R^2)^\frac{3}{2}}}

Plug in the given values:
B_T= \frac{(4\pi *10^{-7}) (470) (0.460)(0.0215)^2}{2 ((0.095)^2 + (0.0215)^2)^\frac{3}{2}}} \\\\ =  0.00006795 = \boxed{67.952 \mu T}

5 0
1 year ago
Read 2 more answers
Other questions:
  • Lila is a track and field athlete. She must complete four laps around a circular track. The track itself is a 400 meter track an
    8·1 answer
  • True or False? A negative energy balance occurs when you take in more calories than you need, and a positive energy balance occu
    15·1 answer
  • What is the difference between work input and work output
    5·1 answer
  • If an object has a mass of 26 g on earth, would its mass be less than 26g on the moon?
    8·2 answers
  • Describe two methods by a magnet can be demagnetized​
    8·2 answers
  • A person is standing 110m below the top of cliff B, and thetwo
    15·1 answer
  • What movements of water has the greatest effect on the growth of producers
    8·1 answer
  • If earth were a ping pong what size ball would jupiter be
    8·1 answer
  • Which physical property of iron is being tested in the picture
    6·1 answer
  • Explain one inference scientists made about the interior of the Earth based on seismic waves. Use the words S & P waves in y
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!