The wire vibrates back and forth between the poles of the magnet.
The frequency of the vibration is the frequency of the AC supply.
Answer:

Explanation:
It is given that,
Charge on helium nucleus is 2e and its mass is 
Speed of nucleus at A is 
Potential at point A, 
Potential at point B, 
We need to find the speed at point B on the circle. It is based on the concept of conservation of energy such that :
increase in kinetic energy = increase in potential×charge

So, the speed at point B is
.
Assume a maximum stopping acceleration of g/2 where g is acceleration due to gravity.
Answer:
2.99 m/s
Explanation:
Stopping distance, s = 3 ft = 0.914 m
final velocity, v = 0
a = g/2 = 4.9 m/s²
Use third equation of motion:

substitute the values to find the speed of train:

Answer:
Explanation:
Formula
W = I * E
Givens
W = 150
E = 120
I = ?
Solution
150 = I * 120 Divide by 120
150/120 = I
5/4 = I
I = 1.25
Note: This is an edited note. You have to assume that 120 is the RMS voltage in order to go any further. That means that the peak voltage is √2 times the size of 120. The current has the same note applied to it. If the voltage is its rms value, then the current must (assuming the properties of the bulb do not change)
On the other hand, if the voltage is the peak value at 120 then 1.25 will be correct.
However I would go with the other answerer's post and multiply both values by √2
If the net force on object A is 5 N and the net force on object B is 10 N, then object B will accelerate more quickly than object A provided the mass of both objects are same.
Answer: Option C
<u>Explanation:
</u>
According to Newton’s second law of motion, any external force applied on an object is directly proportional to the mass and acceleration of the object. In order to state this law in terms of acceleration, it is stated that acceleration exhibited by any object is directly proportional to the net force applied on the object and inversely proportional to the mass of the object as shown below:

So if two objects A and B are identical which means they have same mass, then the acceleration attained by the object will be directly proportionate to the net forces exerted on the objects only.
Thus if the force applied is more for one object, then the object will be exhibiting more acceleration compared to the other one. So as object B is experiencing a net force of 10 N which is greater than the net force experiences by object A, then the object B will be accelerating more quickly compared to the object A's acceleration.