Since the position doesn't change over that time, it's zero
Answer:
A) 100°C
B) 211 g
Explanation:
Heat released by red hot iron to cool to 100°C = 130 x .45 x 645 [ specific heat of iron is .45 J /g/K]
= 37732.5 J
heat required by water to heat up to 100 °C = 85 x 4.2 x 80 = 28560 J
As this heat is less than the heat supplied by iron so equilibrium temperature will be 100 ° C. Let m g of water is vaporized in the process . Heat required for vaporization = m x 540x4.2 = 2268m J
Heat required to warm the water of 85 g to 100 °C = 85X4.2 X 80 = 28560 J
heat lost = heat gained
37732.5 = 28560 + 2268m
m = 4 g.
So 4 g of water will be vaporized and remaining 81 g of water and 130 g of iron that is total of 211 g will be in the cup . final temp of water will be 100 °C.
Okay whats the question though?
The force of gravity is causing him to accelerate downwards, and the force of friction pulls him back. There’s also a normal force keeping him on the slide.
Answer:
11.2 Ω
Explanation:
The impedance of a circuit is given by;
Z= √R^2 +(XL-XC)^2
Since
Resistance R= 10 Ω
Inductive reactance XL= 12 Ω
Capacitive reactance XC= 7 Ω
Z= √10^2 + (12-7)^2
Z= √100 + 25
Z= √125
Z= 11.2 Ω