The temperature will remain constant, at around 100 C, and the volume of water in the pot will decrease, as it turns into steam and floats away from the pot.
It would take 57 test tubes to equal a pint
Answer:
A moving electric charge creates a magnetic field at all points in the surrounding region.
An electric current in a conductor creates a magnetic field at all points in the surrounding region.
A permanent magnet creates a magnetic field at all points in the surrounding region.
Explanation:
Magnetic field can be produced by:
- moving charges (i.e. a moving electron, or a current in a conductor)
- A magnet
The strength of the magnetic field produced by a current-carrying wire is

where
I is the current
r is the distance from the wire
As we see from the formula, the magnetic field is produced at all points in the surrounding region, because B becomes zero only when r becomes infinite. The same is true for the magnetic field created by a single moving charge or by a magnet.
The following choices instead are not correct:
- A single stationary electric charge creates a magnetic field at all points in the surrounding region.
- A distribution of electric charges at rest creates a magnetic field at all points in the surrounding region.
Because they involve the presence of stationary charges, and stationary charges do not produce magnetic fields.
Our sun is 27 million times larger than our moon. Based on its mass, the sun's gravitational attraction to the Earth is more than 177 times greater than that of the moon to the Earth. If tidal forces were based solely on comparative masses, the sun should have a tide-generating force that is 27 million times greater than that of the moon. However, the sun is 390 times further from the Earth than is the moon. Thus, its tide-generating force is reduced by 3903, or about 59 million times less than the moon. Because of these conditions, the sun’s tide-generating force is about half that of the moon.
Answer:
<em>clockwise</em>
<em></em>
Explanation:
when current flows through a ring in a clockwise direction, it produces the equivalent magnetic effect of a southern pole of a magnet on the coil.
Since the current is decreasing, there is a flux change on the lower ring; generating an induced current on the lower ring. According to Lenz law of electromagnetic induction, "the induced current will act in such a way as to oppose the motion or the action producing it". In this case, the induced current will have to be the same polarity to the polarity of the current change producing it so as to repel the two rings far enough to stop the electromagnetic induction. The induced current will then be in the clockwise direction on the lower ring.