Answer:
<h3>Q cuts the diagonal PA into 2 equal halves, since the diagonals of rhombus meet at right angles.</h3><h3>The value of x is 8.</h3>
Step-by-step explanation:
Given that Quadrilateral CAMP below is a rhombus. the length PQ is (x+2) units, and the length of QA is (3x-14) units
From the given Q is the middle point, which cut the diagonal PA into 2 equal halves.
By the definition of rhombus, diagonals meet at right angles.
Implies that PQ = QA
x+2 = 3x - 14
x-3x=-14-2
-2x=-16
2x = 16
dividing by 2 on both sides, we will get,

<h3>∴ x=8</h3><h3>Since Q cuts the diagonal PA into 2 equal halves, since the diagonals of rhombus meet at right angles we can equate x+2 = 3x-14 to find the value of x.</h3>
The line segment 


( since x=8)


<h3>∴

units</h3>
Answer:
Write Susy Baka
Step-by-step explanation:
Answer:
3 1/4, 3 3/8, 6 5/8, 6 3/4
Step-by-step explanation:
Answer:
hello did you already get the answers
I'm not completely sure but this is what I would do.
evaluate <span>(1/ 4)^x - 1 </span>as is. But change the (1 /2)^2x to (2/4)^2x. This way both fractions have the same denominator and in this sense, the same base. The 2/4 base still evaluates into 1/2 so nothing, mathematically, is being broken here.