1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergeinik [125]
3 years ago
12

Which two pieces of data indicate that Uranus resides in the outer region of the solar system

Physics
1 answer:
LuckyWell [14K]3 years ago
4 0

Answer:

Our solar system has total eight planets out of which four are inner planets and four are outer planets. The four outer planets are Jupiter, Saturn, Uranus and Neptune. The common characteristics of outer planets is that they are gaseous planets. They are larger on size than the inner rocky planets and are faraway from Sun. They have larger period of revolution around the Sun.

Uranus is a gaseous planet and lies far from Sun and hence has large period of revolution. It takes 84 Earth years to revolve around Sun. This data indicates that Uranus resides in the outer region of the Solar System.

You might be interested in
Calculate the magnitude of the total impulse applied to the car to bring it to rest
n200080 [17]

Answer:

Total impulse = mv = Initial momentum of the car

Explanation:

Let the mass of the car be 'm' kg moving with a velocity 'v' m/s.

The final velocity of the car is 0 m/s as it is brought to rest.

Impulse is equal to the product of constant force applied to an object for a very small interval. Impulse is also calculated as the total change in the linear momentum of an object during the given time interval.

The magnitude of impulse is the absolute value of the change in momentum.

|J|=|p_f-p_i|

Momentum of an object is equal to the product of its mass and velocity.

So, the initial momentum of the car is given as:

p_i=mv

The final momentum of the car is given as:

p_f=m(0)=0

Therefore, the impulse is given as:

|J|=|p_f-p_i|=|0-mv|=|-mv|=mv

Hence, the magnitude of the impulse applied to the car to bring it to rest is equal to the initial momentum of the car.

5 0
3 years ago
Can you find the magnetic field based on force? a straight segment of wire 35.0 cm long carrying a current of 1.40 a is in a uni
Lostsunrise [7]
The force exerted by a magnetic field on a wire carrying current is:
F=ILB \sin \theta
where I is the current, L the length of the wire, B the magnetic field intensity, and \theta the angle between the wire and the direction of B.

In our problem, the force is F=0.20 N. The current is I=1.40 A, while the length of the wire is L=35.0 cm=0.35 m. The angle between the wire and the magnetic field is 53 ^{\circ}, so we can re-arrange the formula and substitute the numbers to find B:
B= \frac{F}{IL \sin \theta}= \frac{0.20 N}{(1.40 A)(0.35 m)(\sin 53^{\circ})}=0.51 T
3 0
3 years ago
an object is dropped from a height of 25 meters. at what velocity will it hit the ground? a 7.0 m/s b 11 m/s c 22 m/s d 49 m/s e
kipiarov [429]
Assuming that the object starts at rest, we know the following values:

distance = 25m
acceleration = 9.81m/s^2 [down]
initial velocity = 0m/s

we want to find final velocity and we don't know the time it took, so we will use the kinematics equation without time in it:

Velocity final^2 = velocity initial^2 + 2 × acceleration × distance

Filling everythint in, we have:

Vf^2 = 0^2 + (2)(-9.81)(-25)
The reason why the values are negative is because they are going in the negative direction

Vf^2 = 490.5

Take the square root of that

Final velocity = 22.15m/s which is answer c
6 0
3 years ago
1. why did aristarchus choose the time of a half (quarter) moon to make his measurements for calculating the earth-sun distance?
Stells [14]

In order to make his measurements for determining the Earth-Sun distance, Aristarchus waited for the Moon's phase to be exactly half full while the Sun was still visible in the sky. For this reason, he chose the time of a half (quarter) moon.

<h3 /><h3>How did Aristarchus calculate the distance to the Sun?</h3>

It was now possible for another Greek astronomer, Aristarchus, to attempt to determine the Earth's distance from the Sun after learning the distance to the Moon. Aristarchus discovered that the Moon, the Earth, and the Sun formed a right triangle when they were all equally illuminated. Now that he was aware of the distance between the Earth and the Moon, all he needed to know to calculate the Sun's distance was the current angle between the Moon and the Sun. It was a wonderful argument that was weakened by scant evidence. Aristarchus calculated this angle to be 87 degrees using only his eyes, which was not far off from the actual number of 89.83 degrees. But when there are significant distances involved, even slight inaccuracies might suddenly become significant. His outcome was more than a thousand times off.

To know more about how Aristarchus calculate the distance to the Sun, visit:

brainly.com/question/26241069

#SPJ4

7 0
1 year ago
Could someone please help me with this question?​
Elenna [48]
1 because the the mid night summer is dark
3 0
3 years ago
Other questions:
  • _____ are placed on dangerous machinery to detect motion, light, heat, pressure, or another stimulus. Their presence helps prote
    14·2 answers
  • An overhead electric power line carries a maximum current of 125 A. What is the magnitude of the maximum magnetic field at a poi
    12·1 answer
  • 6000 kg train moving 5 m/sec to east collides with 5000 kg train moving 3 m/sec to west. What is their velocity
    13·1 answer
  • Uranus has an orbital period of 84.07 years. In two or more complete sentences, explain how to calculate the average distance fr
    15·2 answers
  • Ms. PB is pushing Mr. Rigney in a wheelchair with a force of 10 N East, while Mr. Rigney is using his arms to
    9·1 answer
  • WILL AWARD OVER 50 POINTS TO WHOEVER ANSWERS FIRST
    8·1 answer
  • Is a magnetic reversal a threat to life on Earth ? Whay do you say?
    15·1 answer
  • A cylindrical container closed of both end has a radius of 7cm and height of 6cm A.)find the total surface area of the container
    5·2 answers
  • A meteorologist plans to release a weather balloon from ground level, to be used for high-altitude atmospheric measurements. The
    13·1 answer
  • During a storm, the waves at this lighthouse were 5.0 meters tall top to bottom, and 10.0 m long. The waves impacted every 6.0 s
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!