<span>When two waves of same frequency travel in a medium simultaneously in the same direction then, due to their superposition, the resultant intensity at any point of the medium is different from the sum of intensities of the two waves. At certain points the intensity of the resultant wave has a large value while at some points it has a very small or zero. This is called wave interference.</span>
Answer:
80m/s
Explanation:
to find it you have to work it out by using the formula distance divided by speed to find time.
You'll never get the correct answer without the correct conversion factor. Note carefully that you have no decimal. It should be
<span>1 km = 0.6214 miles </span>
<span>1000 m = 1 km </span>
<span>60 seconds = 1 minute </span>
<span>60 minutes = 1 hour. </span>
<span>2.998E8 m/s x (1 km/1000m) x (0.6214 miles/km) x (60 sec/min) x (60 min/hr) = ?</span>
Answer:
37.7m/s: principle of conservation of momentum
Explanation:
The principle to make use of is the principle of conservation of momentum which States that the sum of momentum of bodies before collision is equal to the sum of momentum of bodies after collision. This bodies will move with the same velocity after collision.
Momentum = Mass × velocity
For car of mass 2200kg moving with velocity 33m/s:
Momentum of car before collision = 2200×33
= 72,600kgm/s
For the truck of mass 4500kg;
Momentum = 4500 ×(22-(-18)
= 4500×40
= 180000kgm/s
After collision, their momentum is:
Momentum after collision = (2200+4500)v
= 6700v
Using the principle above to get the common velocity v we have
72600+180000 = 6700v
252600 = 6700v
v = 252600/6700
v = 37.7m/s