The best and most correct answer among the choices provided by your question is all of the above.
All of the choices given are the best ways to explain a nuclear reaction.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
1. The answer is option E, that is None of the above is correct.
As a polymer becomes more crystalline,
its melting point doesn't decreases, its density doesn't decreases, its stiffness doesn't decreases and its yield stress doesn't decreases.
2. The answer is option B, that is the molecules are arranged in sheets, with their long axes parallel and their ends aligned as well.
In the smectic A liquid-crystalline phase, molecules are arranged in sheets, with their long axes parallel and their ends aligned as well.
3. For a substitutional alloy to form, the two metals combined must have similar atomic radii and chemical bonding properties.
Mineral resources are solid, crystalline substances made inside the Earth. These include granite, marble, limestone and precious stones which are used for jewellery. Minerals are used to make all sorts of different things which we use every day. Energy resources are things we can use to turn into electrical power.
Answer:
Volume = 746 L
Explanation:
Given that:- Mass of copper(II) fluoride = 175 g
Molar mass of copper(II) fluoride = 101.543 g/mol
The formula for the calculation of moles is shown below:
Thus,

Also,
Considering:
So,,

Given, Molarity = 0.00231 M
So,

<u>Volume = 746 L</u>
Answer:
B
Explanation:
First of all it is important to know that a half filled orbital is particularly stable. In phosphorus all the electrons occur singly in the 3p sublevel minimizing inter electronic repulsion hence it is more difficult to remove an electron from this energetically stable arrangement. In sulphur, electrons are paired in one of the 3p orbitals thereby lowering the energy of that level due to instability caused by interelectronic repulsion between two electrons in the same orbital.