Answer:
The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.

f= force
m=mass
a=acceleration
Explanation:
examples:
riding your bicycle
•your bicycle is the mass, your leg pushing in pedals of your bicycle is the force
pushing a box
•the box is the mass, you are pushing the box
setting a pencil down in a table
•the pencil is the mass, you are puting the pencil down
Answer:
a) k = 891.82 N/m
b) e = 0.0143 m = 1.43 cm
c) W = 5.02 J
Explanation:
Step 1: Data given
Mass = 2.60 kg
the spring stretches 2.86 cm = 0.0286
Step 2: What is the force constant of the spring?
Force constant, k = force applied / extension produced
k = (2.60kg * 9.81N/kg) / 0.0326 m
k = 891.82 N/m
b) If the 2.60-kg object is removed, how far will the spring stretch if a 1.30-kg block is hung on it
Extension = F/k = (1.30 kg * 9.81) / 891.82 = 0.0143 m = 1.43 cm
Half the mass means half the extension
c) How much work must an external agent do to stretch the same spring 7.50 cm from its unstretched position?
W = average force used * distance
W = 1/2 * k*e * e = 1/2 k*e²
W = 1/2 * 891.82 * (0.075)² = W = 5.02 J
Explanation:
Given that,
Initial speed of the billiard ball 1, u = 30i cm/s
Initial speed of another billiard ball 2, u' = 40j cm/s
After the collision,
Final speed of first ball, v = 50 cm/s
Final speed of second ball, v' = 0 (as it stops)
Let us consider that both balls have same mass i.e. m
Initial kinetic energy of the system is :

Final kinetic energy of the system is :

The change in kinetic energy of the system is equal to the difference of final and initial kinetic energy as :
So, the change in kinetic energy of the system as a result of the collision is equal to 0.