Answer:
a)
reaction time = 0.70 s
distance travelled in reaction time = v*t
= 20 m/s * 0.70 s
= 14 m
So, when brake is applied, distance remaining= 110 m - 14 m = 96 m
Answer: 96 m
b)
vf = 0 m/s
d = 96 m
vi = 20 m/s
use:
vf^2 = vi^2 + 2*a*d
0 = 20^2 + 2*a*96
-400 = 2*a*96
a = -2.08 m/s^2
Answer: -2.08 m/s^2
c)
use:
vf = vi + a*t
0 = 20 - 2.08*t
t = 9.6 s
Answer: 9.6 s
Explanation:
Answer: Newton's third law
Formally stated, Newton's third law is: For every action, there is an equal and opposite reaction. The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. The size of the forces on the first object equals the size of the force on the second object.
Explanation:
Answer:
100 m/s
Explanation:
Mass the mass of Bond's boat is m₁. His enemy's boat is twice the mass of Bond's i.e. m₂ = 2 m₁
Initial speed of Bond's boat is 0 as it won't start and remains stationary in the water. The initial speed of enemy's boat is 50 m/s. After the collision, enemy boat is completely stationary. Let v₁ is speed of bond's boat.
It is the concept of the conservation of momentum. It remains conserved. So,

Putting all the values, we get :

So, Bond's boat is moving with a speed of 100 m/s after the collision.
Answer:
F=m*g is the formula and the answer is 19,620 kg
Explanation:
Since the formula is F=m*g and Earth's gravity is 9.81 m/s^2 all you need to do is multiply 2,000 by 9.81
Answer:
NO
Explanation:
No, a machine cannot be 100% efficient. This is due to the movement of the moving parts siding against each other and causing friction. This friction is the one that creates heat and causes wear and tear between moving ports f the machine hence making the machine to decrease in efficiency with time