Explanation:
given,
mass of one planet (m1)=2*10^23 kg
mass of another planet (m2)=5*10^22kg
distance between them(d)=3*10^16m
gravitational constant(G)=6.67*10^-11Nm^2kg^-2
gravitational force between them(F)=?
we know,
F=Gm1m2/d^2
or, F=6.67*10^-11*2*10^23*5*10^22/(3*10^16)^2
or, F=6.67*2*5*10^-11+23+22/3*3*10^32
or, F=66.7*10^34/9*10^32
or, F=7.41*10^34-32
•°• F=7.41*10^2
thus, the gravitational force between them is 7.14*10^2
Answer:
(a) 6650246.305 N/C
(b) 24150268.34 N/C
(c) 6408227.848 N/C
(d) 665024.6305 N/C
Explanation:
Given:
Radius of the ring (r) = 10.0 cm = 0.10 m [1 cm = 0.01 m]
Total charge of the ring (Q) = 75.0 μC =
[1 μC = 10⁻⁶ C]
Electric field on the axis of the ring of radius 'r' at a distance of 'x' from the center of the ring is given as:

Plug in the given values for each point and solve.
(a)
Given:
, 
Electric field is given as:

(b)
Given:
, 
Electric field is given as:

(c)
Given:
, 
Electric field is given as:

(d)
Given:
, 
Electric field is given as:
The answere is No pain, no gain
Answer:
N = 337.96 N
Explanation:
∅ = 32º
F = 249 N
m = 21 Kg
N = ?
We can apply:
∑ F = 0 (↑)
- Fy - W + N = 0 ⇒ N = Fy + W
⇒ F*Sin ∅ + m*g = N
⇒ N = (249 N*Sin32º) + (21 Kg*9.81 m/s²)
⇒ N = 337.96 N (↑)