Answer:
The time required is 10.078 hours or 605 min
Explanation:
The formula to apply here is ;
K=(d²-d²₀ )/t
where t is time in hours
d is grain diameter to be achieved after heating in mm
d₀ is the grain diameter before heating in mm
Given
d=5.5 × 10^-2 mm
d₀=2.4 × 10^-2 mm
t₁= 500 min = 500/60 =25/3 hrs
t₂=?
n=2.2
First find K
K=(d²-d²₀ )/t₁
K={ (5.1 × 10^-2 mm)²-(2.4 × 10−2 mm)² }/ 25/3
K=(0.051²-0.024²) ÷25/2
K=0.000243 mm²/h
Re-arrange equation for K ,to get the equation for d as;
d=√(d₀²+ Kt) where now t=t₂

Answer:
#include <iostream>
using namespace std;
void PrintPopcornTime(int bagOunces) {
if(bagOunces < 3){
cout << "Too small";
cout << endl;
}
else if(bagOunces > 10){
cout << "Too large";
cout << endl;
}
else{
cout << (6 * bagOunces) << " seconds" << endl;
}
}
int main() {
PrintPopcornTime(7);
return 0;
}
Explanation:
Using C++ to write the program. In line 1 we define the header "#include <iostream>" that defines the standard input/output stream objects. In line 2 "using namespace std" gives me the ability to use classes or functions, From lines 5 to 17 we define the function "PrintPopcornTime(), with int parameter bagOunces" Line 19 we can then call the function using 7 as the argument "PrintPopcornTime(7);" to get the expected output.
Answer:
S = 5.7209 M
Explanation:
Given data:
B = 20.1 m
conductivity ( K ) = 14.9 m/day
Storativity ( s ) = 0.0051
1 gpm = 5.451 m^3/day
calculate the Transmissibility ( T ) = K * B
= 14.9 * 20.1 = 299.5 m^2/day
Note :
t = 1
U = ( r^2* S ) / (4*T*<em> t </em>)
= ( 7^2 * 0.0051 ) / ( 4 * 299.5 * 1 ) = 2.0859 * 10^-4
Applying the thesis method
W(u) = -0.5772 - In(U)
= 7.9
next we calculate the pumping rate from well ( Q ) in m^3/day
= 500 * 5.451 m^3 /day
= 2725.5 m^3 /day
Finally calculate the drawdown at a distance of 7.0 m form the well after 1 day of pumping
S = 
where : Q = 2725.5
T = 299.5
W(u) = 7.9
substitute the given values into equation above
S = 5.7209 M
Answer:
The answer will be Rule 61G15-23 F.A.C, relating to Seals.
Explanation:
According to the description given by: Florida administrative code&Florida administrative register the Minimum requirements for engineering documents are in the section 'Final 61G15-23' from 11/3/2015. This document provides specifications of materials required for the safe operation of the system that is the result of engineering calculations, knowledge and experience.