Answer:
The answer is below
Explanation:
The practical considerations you might encounter when you increase the moment of inertia (I) while keeping the cross-sectional area fixed are:
1. Shapes of moment of inertia: Engineers should consider or know the different shapes of moment of inertia for different shape
2. Understanding the orientation of the beam: this will allow engineers to either increase or decrease the moment of inertia of a beam without increasing its cross sectional area.
Answer:
the saturated density should be
Explanation:
Answer:
a)
, b)
, c) 
Explanation:
a) The deceleration experimented by the commuter train in the first 2.5 miles is:
![a=\frac{[(15\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot (\frac{1\,h}{3600\,s} )]^{2}-[(50\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot (\frac{1\,h}{3600\,s} )]^{2}}{2\cdot (2.5\,mi)\cdot (\frac{5280\,ft}{1\,mi} )}](https://tex.z-dn.net/?f=a%3D%5Cfrac%7B%5B%2815%5C%2C%5Cfrac%7Bmi%7D%7Bh%7D%20%29%5Ccdot%20%28%5Cfrac%7B5280%5C%2Cft%7D%7B1%5C%2Cmi%7D%20%29%5Ccdot%20%28%5Cfrac%7B1%5C%2Ch%7D%7B3600%5C%2Cs%7D%20%29%5D%5E%7B2%7D-%5B%2850%5C%2C%5Cfrac%7Bmi%7D%7Bh%7D%20%29%5Ccdot%20%28%5Cfrac%7B5280%5C%2Cft%7D%7B1%5C%2Cmi%7D%20%29%5Ccdot%20%28%5Cfrac%7B1%5C%2Ch%7D%7B3600%5C%2Cs%7D%20%29%5D%5E%7B2%7D%7D%7B2%5Ccdot%20%282.5%5C%2Cmi%29%5Ccdot%20%28%5Cfrac%7B5280%5C%2Cft%7D%7B1%5C%2Cmi%7D%20%29%7D)

The time required to travel is:


b) The commuter train must stop when it reaches the station to receive passengers. Hence, speed of train must be
.
c) The final constant deceleration is:


Answer:
Flow energy is defined as, flow energy is the energy needed to push fluids into control volume and it is the amount of work done required to push the entire fluid. It is also known as flow work. Flow energy is not the fundamental quantities like potential and kinetic energy.
Fluid at state of rest do not possess any flow energy. It is mostly converted into internal energy as, rising in the fluid temperature.
Answer:
h = 287.1 m
Explanation:
the density of mercury \rho =13570 kg/m3
the atmospheric pressure at the top of the building is

the atmospheric pressure at bottom


we have also

1.18*9.81*h = (100.4 -97.08)*10^3
h = 287.1 m