1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pickupchik [31]
2 years ago
10

In water and wastewater treatment processes a filtration device may be used to remove water from the sludge formed by a precipit

ation reaction. The initial concentration of sludge from a softening reaction (Chapter 4) is 3 2 percent (20,000 mg/L) and the volume of sludge is 100 m . After filtra- tion the sludge solids concentration is 35 percent. Assume that the sludge does not change density during filtration, and that liquid removed from the sludge contains no sludge. Using the mass balance method, determine the volume of sludge after filtration.
Engineering
1 answer:
PtichkaEL [24]2 years ago
6 0

Answer:

The volume of sludge after filtration is 0.914 m

Explanation:

Solution

Given that:

We have to find the Volume of sludge after filtration

Now,

The  Sludge concentration is = 32%,

The sludge volume = 100 m,

The sludge concentration after filtration = 35%

Then,

The mass balance equation is stated below

Cin∀in = Cout∀out

Now,

We Solve for ∀out

∀out =Cin∀in/Cout

By substituting the values

∀out = (0.32)(100 m)/(0.35) = 0.914 m

You might be interested in
What are practical considerations you might encounter when you increase the moment of inertia (I) while keeping the cross-sectio
Mrrafil [7]

Answer:

The answer is below

Explanation:

The practical considerations you might encounter when you increase the moment of inertia (I) while keeping the cross-sectional area fixed are:

1. Shapes of moment of inertia: Engineers should consider or know the different shapes of moment of inertia for different shape

2. Understanding the orientation of the beam: this will allow engineers to either increase or decrease the moment of inertia of a beam without increasing its cross sectional area.

4 0
2 years ago
The bulk density of a compacted soil specimen (Gs = 2.70) and its water content are 2060 kg/m^3 and 15.3%, respectively. If the
yaroslaw [1]

Answer:

the saturated density should be

Explanation:

4 0
3 years ago
A commuter train traveling at 50 mi/h is 3 mi from a station. The train then decelerates so that its speed is 15 mi/h when it is
jonny [76]

Answer:

a) t = 277.477\,s\,(4.625\min), b) v_{f} = 0\,\frac{mi}{h}, c) a = -0.128\,\frac{ft}{s^{2}}

Explanation:

a) The deceleration experimented by the commuter train in the first 2.5 miles is:

a=\frac{[(15\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot (\frac{1\,h}{3600\,s} )]^{2}-[(50\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot (\frac{1\,h}{3600\,s} )]^{2}}{2\cdot (2.5\,mi)\cdot (\frac{5280\,ft}{1\,mi} )}

a = -0.185\,\frac{ft}{s^{2}}

The time required to travel is:

t = \frac{(15\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,fi} )\cdot(\frac{1\,h}{3600\,s} )-(50\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,fi} )\cdot(\frac{1\,h}{3600\,s} )}{-0.185\,\frac{ft}{s^{2}} }

t = 277.477\,s\,(4.625\min)

b) The commuter train must stop when it reaches the station to receive passengers. Hence, speed of train must be v_{f} = 0\,\frac{mi}{h}.

c) The final constant deceleration is:

a = \frac{(0\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot(\frac{1\,h}{3600\,s} )-(15\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot(\frac{1\,h}{3600\,s} )}{(2.875\,min)\cdot (\frac{60\,s}{1\,min} )}

a = -0.128\,\frac{ft}{s^{2}}

7 0
3 years ago
What is flow energy? Do fluids at rest possess any flow energy?
anzhelika [568]

Answer:

Flow energy is defined as, flow energy is the energy needed to push fluids into control volume and it is the amount of work done required to push the entire fluid. It is also known as flow work. Flow energy is not the fundamental quantities like potential and kinetic energy.

Fluid at state of rest do not possess any flow energy. It is mostly converted into internal energy as, rising in the fluid temperature.

8 0
3 years ago
The basic barometer can be used to measure the height of a building. If the barometric readings at the top and at the bottom of
bixtya [17]

Answer:

h = 287.1 m

Explanation:

the density of mercury \rho =13570 kg/m3

the atmospheric pressure at the top of the building is

p_t = \rho gh  = 13570*908*0.73 = 97.08 kPa

the atmospheric pressure at bottom

p_b = \rho gh  = 13570*908*0.75 = 100.4 kPa

\frac{w_{air}}{A} =p_b -p_t

we have also

(\rho gh)_{air} = p_b - p_t

1.18*9.81*h = (100.4 -97.08)*10^3

h = 287.1 m

7 0
3 years ago
Other questions:
  • How do Solar Engineers Help Humans?<br> (2 or more sentences please)
    9·1 answer
  • Technician A says ASE certification is mandatory in all 50 states before performing an automotive repair for pay. Technician B s
    12·1 answer
  • A Toyota Camry of mass 1650 kg turns from Chaplin Road to Route 79, thereby accelerating from 35 MPH in the city till 70 MPH on
    6·1 answer
  • DO NOW: Name the three main legal categories of ownership.
    12·1 answer
  • If d=0.25m and D=0.40m. Assume headloss from the contraction to the end of the pipe can be found as hų = 0.9 (V is velocity in t
    8·1 answer
  • Consider uniaxial extension of a test specimen. It has gauge length L = 22 cm (the distance between where it is clamped in the t
    6·1 answer
  • Why do organisms differ in their methods of reproduction?
    5·2 answers
  • What major financial flop led to the end of the Sega Dreamcast and ultimately caused Sega to stop making game consoles altogethe
    15·1 answer
  • Can someone please help!
    8·1 answer
  • A type of adjustable square that can be used to set, test, and transfer angles is called a
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!