Answer:
Explanation:
The difference in time will be due to travel through atmosphere where speed of light slows down. If t be the thickness of atmosphere and c be the speed of light in space and μ be the refractive index of atmosphere difference in travel time will be as follows .
difference = \frac{2t\mu }{c}-\frac{2t }{c}
=\frac{2t}{c }\left ( 1-\mu \right )
Now t = 40 x 10³m ,μ = 1.000293 , c = 3 x 10⁸.
difference =\frac{2t\mu }{c}-\frac{2t }{c}
=\frac{2t}{c }\left ( \mu -1 \right )\\
=\frac{ 2\times 40\times 10^3}{3\times10^3 }\left ( 1.000293-1 \right )\\
=7.81\times 10^{-3}
s
Answer:
The outside layer is the wettest.
Explanation:
Answer:
Explanation:
<u>Average Density
</u>
The density of an object of mass m and volume V is
If we know the density and the volume occupied by the object, the mass can be computed as
The tank can hold 20 L of gasoline when full. Converting to cubic meters
That's the volume of the gasoline it contains. Knowing the density of the gasoline, we get the mass of gasoline.
To know the total mass of both, we add the 2.5 kg of the tank
The volume of the tank is computed solving for V
The total volume is
The average density is
1.Light-collecting area
2.Angular resolution
The decrease in energy in the hydrogen molecule is what allows its formation on Earth, but in stars the great energy of the explosion has a kinetic energy so great that electrons cannot bind to another atom, which is why hydrogen has a single atom.
The hydrogen molecule is a form that two hydrogen atoms share their electrons decreasing the total energy of the molecule, this bond has a covalent and hydrogen bonding characteristic.
In a stellar explosion, the energy released increases the energy of the hydrogen atom, for which we have two possibilities:
- Its electron is lost, so we are in a single proton, in the case of structures where the proton and the elector are
- The hydrogen atom remains but the energy of the atom is very high so the kinetic energy of the electron prevents the electron from being shared by the other atom and the molecule cannot be formed.
When the atoms are thrown into space, the separation between them is so high that it does not allow electrons to be shared and molecules cannot be formed either.
In conclusion, the decrease in energy in the hydrogen molecule is what allows its formation on Earth, but in stars the great energy of the explosion has a kinetic energy so great that electrons cannot join another atom, which is why the hydrogen has only one atom.
Learn more about the Hydrogen atom here:
brainly.com/question/22464200