The eroded rock and soil materials that are transported downstream by a river are called its load. A river transports, or carries, its load in three different ways: in solution, in suspension, and in its bed load.
Mineral matter that has been dissolved from bedrock is carried in solution. Common minerals carried in solution by rivers include dissolved calcium, magnesium, and bicarbonate. Most of a river’s solution load comes from groundwater seeping into the river. Before it reaches the stream,thegroundwaterhastraveledthroughfracturesinthebedrock, chemically eroding rock along the way.
When river water looks muddy, it is carrying rock material in suspension. Suspended material includes clay, silt, and fine sand. Although these suspended materials are heavier than water, the turbulence of the stream flow stirs them up and keeps them from sinking. Turbulence includes swirls and eddies that form in water as a result of friction between the stream and its channel. The faster a stream flows, the more turbulent and muddy it becomes. A rough or irregular channel also increases turbulence.
A river may also transport rock materials in its bed load. The bed load consists of sand, pebbles, and boulders that are too heavy to be carried in suspension. These heavier materials are moved along the streambed, especially during floods. Boulders and pebbles roll or slide along the river bed. Large sand grains are pushed along the bottom in a series of jumps and bounces.
The relative amounts of a river’s load that are carried in solution, in suspension, and in the bed load depend on the nature of the river, the climate, the type of bedrock, and the season of the year. As a general rule, most of the load carried by the world’s streams and rivers is carried in suspension. The size of a river’s suspended load increases with human land use. Road and building construction and removal of vegetation make it easier for rain to wash sediment into streams and rivers.
If a volcano epulses massive amounts of dust into the atmosphere, those two things will/can happen.
The events will last until the dust lays down on the earth.
Answer:
The "Biltmore Agreement" stipulated that:
Radio stations agreed to broadcast no longer than five minutes of news, twice per day, while using information supplied by the newspapers.
e. radio stations could only air five-minutes newscasts a day.
Explanation:
The Biltmore Agreement tried to reconcile within the press war between newspapers and radio, as during its golden age the newspapers´ revenues decreased. Radio´s brand new technology was more attractive and creative for advertising and could report breaking news faster than the newspapers, which through the press associations including the Associated Press and the United Press, pressured to stop providing news to radio stations beginning a war in 1933, which partially ended with the Biltmore Agreement, which restricted the radio´s broadcasting of news if the newspapers continued publishing radio listings, radio stations were to broadcast no longer than five minutes of news, twice per day, if information supplied by the newspapers was used, no sponsors were allowed, and no more that 30 words in a single story were allowed either; radio stations had to include: "See your daily newspaper for further details" in their announcements and, could only broadcast news after 9:30 AM for morning news, and after 9:00 PM for evening news, so people would have already received their newspapers.
The minimum value of the coefficient of static friction between the block and the slope is 0.53.
<h3>Minimum coefficient of static friction</h3>
Apply Newton's second law of motion;
F - μFs = 0
μFs = F
where;
- μ is coefficient of static friction
- Fs is frictional force
- F is applied force
μ = F/Fs
μ = F/(mgcosθ)
μ = (250)/(50 x 9.8 x cos15)
μ = 0.53
Thus, the minimum value of the coefficient of static friction between the block and the slope is 0.53.
Learn more about coefficient of friction here: brainly.com/question/20241845
#SPJ1