0.008 = eight thousandths
Hope it helps
Answer:
![(D)E[ X ] =np.](https://tex.z-dn.net/?f=%28D%29E%5B%20X%20%5D%20%3Dnp.)
Step-by-step explanation:
Given a binomial experiment with n trials and probability of success p,


Since each term of the summation is multiplied by x, the value of the term corresponding to x = 0 will be 0. Therefore the expected value becomes:

Now,

Substituting,

Factoring out the n and one p from the above expression:

Representing k=x-1 in the above gives us:

This can then be written by the Binomial Formula as:
![E[ X ] = (np) (p +(1 - p))^{n -1 }= np.](https://tex.z-dn.net/?f=E%5B%20X%20%5D%20%3D%20%28np%29%20%28p%20%2B%281%20-%20p%29%29%5E%7Bn%20-1%20%7D%3D%20np.)
sum of sequence Find the sum of 46 + 42 + 38 + ... + (-446) + (-450) is -25,250
<u>Step-by-step explanation:</u>
We need to find sum of sequence : 46 + 42 + 38 + ... + (-446) + (-450)
Given sequence is an AP with following parameters as :

So , Let's calculate how many terms are there as :
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
Sum of an AP is :
⇒ 
⇒ 
⇒ 
⇒ 
Therefore , sum of sequence Find the sum of 46 + 42 + 38 + ... + (-446) + (-450) is -25,250
Answer:
D
Step-by-step explanation:
Because that’s the answer Lol