We can use the heat equation,
Q = mcΔT
where Q is the amount of energy transferred (J), m is the mass of the substance (kg), c is the specific heat (J g⁻¹ °C⁻¹) and ΔT is the temperature difference (°C).
Q = 11.2 kJ = 11200 J
m = <span>145 g
</span>c = ?
ΔT = (67 - 22) °C = 45 °C
By applying the formula,
11200 J = 145 g x c x 45 °C
c = 1.72 J g⁻¹ °C⁻¹
Hence, specific heat of benzene is 1.72 J g⁻¹ °C⁻¹.
Answer: 4.
and 
Explanation:
a) The given reaction is 
As the mass on both reactant and product side must be equal:


As the atomic number on both reactant and product side must be equal:



b) 
Total mass on reactant side = total mass on product side
15 =15 + x
x = 0
Total atomic number on reactant side = total atomic number on product side
8 = 7 + y
y = 1

Answer:
moles = given mass/atomic mass
so H2O mass = 2 +16=18
so 12g of h2o= 12/16 = 3/4 moles
(0.48 gram) x (1mole / 4.0 gram) = 0.48/4.0 = 0.12 mole
False. At equilibrium, the rate of forward reaction is equal to the rate of backward reaction. The net concentration of both products and reactants won't change, but the reactions still take place.