Answer:
The radius of curvature is 979 meter
Explanation:
We have given velocity of the canon ball v = 98 m/sec
Acceleration due to gravity 
We know that at highest point of trajectory angular acceleration is equal to acceleration due to gravity
Acceleration due to gravity is given by
, here v is velocity and r is radius of curvature
So 
r = 979 meter
So the radius of curvature is 979 meter
Answer:
The velocities in points A and B are 1.9 and 7.63 m/s respectively. The Pressure at point B is 28 Kpa.
Explanation:
Assuming the fluid to be incompressible we can apply for the continuity equation for fluids:

Where A, V and Q are the areas, velocities and volume rate respectively. For section A and B the areas are:


Using the volume rate:


Assuming no losses, the energy equation for fluids can be written as:

Here P, V, p, z and g represent the pressure, velocities, height and gravity acceleration. Considering the zero height level at point A and solving for Pb:

Knowing the manometric pressure in point A of 70kPa, the height at point B of 1.5 meters, the density of water of 1000 kg/m^3 and the velocities calculated, the pressure at B results:



Answer:
3. A team designs an arid-zone shade structure from political campaign sign
Answer:
correct option is (A) 0.5
Explanation:
given data
axial column load = 250 kN per meter
footing placed = 0.5 m
cohesion = 25 kPa
internal friction angle = 5°
solution
we know angle of internal friction is 5° that is near to 0°
so it means the soil is almost cohesive soil.
and for a pure cohesive soil
= 0
and we know formula for
is
= (Nq - 1 ) × tan(Ф) ..................1
so here Ф is very less
should be nearest to zero
and its value can be 0.5
so correct option is (A) 0.5