Answer:
h = 375 KW/m^2K
Explanation:
Given:
Thermo-couple distances: L_1 = 10 mm , L_2 = 20 mm
steel thermal conductivity k = 15 W / mK
Thermo-couple temperature measurements: T_1 = 50 C , T_2 = 40 C
Air Temp T_∞ = 100 C
Assuming there are no other energy sources, energy balance equation is:
E_in = E_out
q"_cond = q"_conv
Since, its a case 1-D steady state conduction, the total heat transfer rate can be found from Fourier's Law for surfaces 1 and 2
q"_cond = k * (T_1 - T_2) / (L_2 - L_1) = 15 * (50 - 40) / (0.02 - 0.01)
=15KW/m^2
Assuming SS is solid, temperature at the surface exposed to air will be 60 C since its gradient is linear in the case of conduction, and there are two temperatures given in the problem. Convection coefficient can be found from Newton's Law of cooling:
q"_conv = h * ( T_∞ - T_s ) ----> h = q"_conv / ( T_∞ - T_s )
h = 15000 W / (100 - 60 ) C = 375 KW/m^2K
Answer:
The Python Code for Fibonacci Sequence is :
# Function for nth Fibonacci number
def Fibonacci(n):
if n<0:
print("Incorrect input")
# First Fibonacci number is 0
elif n==0:
return 0
# Second Fibonacci number is 1
elif n==1:
return 1
else:
return Fibonacci(n-1)+Fibonacci(n-2)
# Driver Program
print(Fibonacci(9))
Explanation:
The Fibonacci numbers are the numbers in the following integer sequence.
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ……..
In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation
Fn = Fn-1 + Fn-2
with seed values
F0 = 0 and F1 = 1.
Answer:
Hearing protection would be your answer!
Explanation:
This includes earplugs,muffs etc.
Hope it helps!
Answer: change the tires
Explanation: you can’t drive on a flat tire
Answer:
μ = 0.136
Explanation:
given,
velocity of the car = 20 m/s
radius of the track = 300 m
mass of the car = 2000 kg
centrifugal force


F c = 2666. 67 N
F f= μ N
F f = μ m g
2666.67 = μ × 2000 × 9.8
μ = 0.136
so, the minimum coefficient of friction between road surface and car tyre is equal to μ = 0.136