Answer:
The simplest differential form of Fick's flux equation for water vapor is

Explanation:
Fick's law has to do with the density of the particles is proportional to their concentration gradient. For this question some assumptions will be taken into account:
-The pipe is considered to be very long and diffusion only occurs in the r direction.
-The reaction is not homogeneous, therefore RA = 0
-The concentration of the component A is constant
-No mixing, only diffusion
Due to the complexity of the terms used in solving the Fick equation, the solution is found in the attached file.
Answer:
C
Explanation:
N = Na.P/A------(1)
Na = avogadro's number = 6.02210²³
P = density
A = atomic weight of metal
When we substitute into equation 1 above we get
1.0x10²⁹atoms/m³
From here we calculate the number of vacancies
T = 1000⁰c = 1273K
The formula to use is
Nv= Nexo(Qt/K.T) -----(2)
Qt = 1.22eV
K = Boltzmann's constant = 8.6210x10^-5
When we substitute values into equation 2
We get Nv = 1.49 x 10²⁴m-3
Therefore option c is correct
Check attachment for a more detailed calculation of this question
The breaking fluent would squirt out
Answer:
Please, see the attachment.
Explanation:
First, we have to create two input boxes that allows the user to write the current year in one of them and his/her birth year in the another one. Also, we have to create a label that will show the result of the desired variable. We can write a message "Your age is:" and it will be attached to the result.
For the algorithm, let's call the variables as follows:
CY = Current Year
BY = Birth Year
X = Age of user
When the user inserts the current year and his/her birth year, the program will do the following operation:
X = CY - BY; this operation will give us the age of the user
After this the user will see something like "Your age is:" X.