1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ser-zykov [4K]
2 years ago
7

Why does the compression-refrigeration cycle have a high-pressure side and a low-pressure side?

Engineering
1 answer:
Cloud [144]2 years ago
8 0

Answer: D

Explanation:

You might be interested in
can someone help me with this engineering mechanics homework, please? I tried to solve it, but I got so confused.​
marishachu [46]

Explanation:

Sum of forces in the x direction:

∑Fx = ma

Rx − 250 N = 0

Rx = 250 N

Sum of forces in the y direction:

∑Fy = ma

Ry − 120 N − 300 N = 0

Ry = 420 N

Sum of forces in the z direction:

∑Fz = ma

Rz − 50 N = 0

Rz = 50 N

Sum of moments about the x axis:

∑τx = Iα

Mx + (-50 N)(0.2 m) + (-120 N)(0.1 m) = 0

Mx = 22 Nm

Sum of moments about the y axis:

∑τy = Iα

My = 0 Nm

Sum of moments about the z axis:

∑τz = Iα

Mz + (250 N)(0.2 m) + (-120 N)(0.16 m) = 0

Mz = -30.8 Nm

6 0
4 years ago
Controlling your vehicle
Ratling [72]

Answer:

5. D

6. c

7. d

Explanation:

3 0
3 years ago
Find the time-domain sinusoid for the following phasors:_________
sattari [20]

<u>Answer</u>:

a.  r(t) = 6.40 cos (ωt + 38.66°) units

b.  r(t) = 6.40 cos (ωt - 38.66°) units

c.  r(t) = 6.40 cos (ωt - 38.66°) units

d.  r(t) = 6.40 cos (ωt + 38.66°) units

<u>Explanation</u>:

To find the time-domain sinusoid for a phasor, given as a + bj, we follow the following steps:

(i) Convert the phasor to polar form. The polar form is written as;

r∠Ф

Where;

r = magnitude of the phasor = \sqrt{a^2 + b^2}

Ф = direction = tan⁻¹ (\frac{b}{a})

(ii) Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid (r(t)) as follows:

r(t) = r cos (ωt + Φ)

Where;

ω = angular frequency of the sinusoid

Φ = phase angle of the sinusoid

(a) 5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

5 + j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

(b) 5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

5 - j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(c) -5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{-5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

-5 + j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(d) -5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{-5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

-5 - j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

3 0
3 years ago
The pressure of a gas in a rigid container is 125kpa at 300k, what we be the new pressure if the temperature increases to 900k​
kipiarov [429]

Answer:

375 KPa

Explanation:

From the question given above, the following data were obtained:

Initial pressure (P₁) = 125 KPa

Initial temperature (T₁) = 300 K

Final temperature (T₂) = 900 K

Final pressure (P₂) =?

The new (i.e final) pressure of the gas can be obtained as follow:

P₁/T₁ = P₂/T₂

125 / 300 = P₂ / 900

Cross multiply

300 × P₂ = 125 × 900

300 × P₂ = 112500

Divide both side by 300

P₂ = 112500 / 300

P₂ = 375 KPa

Thus, the new pressure of the gas is 375 KPa

7 0
3 years ago
A pipeline (NPS = 14 in; schedule = 80) has a length of 200 m. Water (15℃) is flowing at 0.16 m3/s. What is the pipe head loss f
dangina [55]

Answer:

Head loss is 1.64

Explanation:

Given data:

Length (L) = 200 m

Discharge (Q) = 0.16 m3/s

According to table of nominal pipe size , for schedule 80 , NPS 14,  pipe has diameter (D)= 12.5 in or 31.8 cm 0.318 m

We know, head\ loss  = \frac{f L V^2}{( 2 g D)}

where, f = Darcy friction factor

V = flow velocity

g = acceleration due to gravity

We know, flow rate Q = A x V

solving for V

V = \frac{Q}{A}

    = \frac{0.16}{\frac{\pi}{4} (0.318)^2} = 2.015 m/s

obtained Darcy friction factor  

calculate Reynold number (Re) ,

Re = \frac{\rho V D}{\mu}

where,\rho = density of water

\mu = Dynamic viscosity of water at 15 degree  C = 0.001 Ns/m2

so reynold number is

Re = \frac{1000\times 2.015\times 0.318}{0.001}

            = 6.4 x 10^5

For Schedule 80 PVC pipes , roughness (e) is  0.0015 mm

Relative roughness (e/D) = 0.0015 / 318 = 0.00005

from Moody diagram, for Re = 640000 and e/D = 0.00005 , Darcy friction factor , f = 0.0126

Therefore head loss is

HL = \frac{0.0126 (200)(2.015)^2}{( 2 \times 9.81 \times 0.318)}

HL = 1.64 m

7 0
4 years ago
Other questions:
  • Which of the following statements do not correctly describe pull manufacturing? (1). Material flow is determined by the need of
    8·1 answer
  • A 15-ft beam weighing 570 lb is lowered by means of two cables unwinding from overhead cranes. As the beam approaches the ground
    9·1 answer
  • B1) 20 pts. The thickness of each of the two sheets to be resistance spot welded is 3.5 mm. It is desired to form a weld nugget
    12·1 answer
  • Consider an InSb NW with ballistic mean free path of 150nm. Calculate the current through a 250nm long InSb NW when a 100mV bias
    6·1 answer
  • A stainless-steel specimen from the same material characterized up above, was formed into a rectangular cross-section of dimensi
    9·1 answer
  • A water tower that is 90 ft high provides water to a residential subdivision. The water main from the tower to the subdivision i
    10·1 answer
  • When testing a compressor with an ohm meter, a technician read 2 ohms between the start terminal and the case of the compressor.
    5·1 answer
  • How to find magnitude of forces
    8·1 answer
  • Users say that the game is interesting to look at but the music gets annoying
    9·1 answer
  • What Number Am I?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!