Answer: It should be the 3rd option down!
Explanation:
Answer:
Disruption to electricity power grid
Explanation:
We're looking a a solar flare. This will whip solar particles at high velocity into space and, If they are near earth, will interact with the earth's magnetic field. These magnetic changes will be measurable in the electric grid. Whether they are strong enough to cause "disruption" depends on a huge number of factors such as strength of and angles of the interacting magnetic fields and location of grid infrastructure,
A an observation hehdhhdhdhdhdhhdhdhdhdhdb
Answer:
Magnetic force, 
Explanation:
Given that,
A beryllium-9 ion has a positive charge that is double the charge of a proton, 
Speed of the ion in the magnetic field, 
Its velocity makes an angle of 61° with the direction of the magnetic field at the ion's location.
The magnitude of the field is 0.220 T.
We need to find the magnitude of the magnetic force on the ion. It is given by :

So, the magnitude of magnetic force on the ion is
.